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Abstract

In the absence of inertial effects, the heat or mass transfer from torque-free neutrally buoyant spheres in planar shearing flows of Newtonian fluids
is diffusion limited at large Pe; here, the Peclet number (Pe) is a dimensionless measure of the relative importance of convective and diffusive transfer
mechanisms. In the inertialess Newtonian limit, the linearity and reversibility of the governing Stokes equations of motion leads to the existence
of aregion of closed streamlines around the freely-rotating particle that precludes convective enhancement in these flows. Non-Newtonian stresses
act to break this symmetry, and the rate of heat/mass transfer from the particle is significantly increased for large Pe. It is possible to analytically
determine the transport rate in the limit of weak non-Newtonian effects. For a torque-free particle in a planar linear flow of a second-order fluid,
the dimensionless rate of heat or mass transfer, characterized by the Nusselt number, is found to be Nu = 0.478[ Pe De(1 + 21+ e)]l/3 in the
limit Pe De > 1 and De < 1, where € is a dimensionless property of the fluid, and A is a parameter that depends on the relative magnitudes
of extension and vorticity in the ambient flow. In simple shear flow, corresponding to A = 0, the Nusselt number may be alternatively written as
6.01(Pe De)'*[((1 /2) + (W /¥1) /(1 + (¥ /)] 13 here, ¥, and ¥, are the first and second normal stress coefficients. The Deborah number (De)
is the ratio of the intrinsic relaxation time of the fluid to the macroscopic flow time scale in all above cases, and serves as a dimensionless measure
of the relative magnitudes of the non-Newtonian (elastic) and Newtonian stresses; for simple shear flow, one may define De = (¥; + ¥,)y/n in

terms of the normal stress coefficients, 1 being the solvent viscosity.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The transport of heat/mass from neutrally buoyant particles
suspended in shearing flows of viscoelastic fluids is relevant to
several industrial applications; for instance, in the sterilization
of food products. Heat and mass transfer to suspended parti-
cles also play a role in certain polymerization processes such as
emulsion and suspension polymerization. Although the particles
involved in these applications may not have mass densities that
are precisely matched to those of the suspending fluids, the high
viscosity of most viscoelastic fluids implies that the effects of
sedimentation may be weak. From a fundamental point of view,
it is of interest to examine how elastic forces act to change the
heat/mass transfer characteristics of particles suspended in non-
Newtonian fluids when compared to the Newtonian scenario.
In addition, the changes in the fluid velocity field on account
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of elastic effects, and the resulting paths of fluid elements, are
expected to yield useful insights into the more difficult problem
of interaction between two or more spheres. This is in light of the
fact that inertialess pair-interactions in a Newtonian fluid sub-
jectto alinear flow, notwithstanding differences in detail, closely
follow the topology of the streamlines around a single torque-
free sphere [1,2]. An understanding of pair-interactions in a
non-Newtonian fluid may help to explain the initial stages of par-
ticle aggregation in sheared viscoelastic suspensions. The latter
phenomenon often complicates the interpretation of rheological
measurements [3]; experiments have revealed the tendency of
spheres in shearing flows to form long chains along the flow
direction [4]. Clearly, characterizing the flow field around a sin-
gle torque-free sphere in the shearing flow of a second-order fluid
represents a first step towards understanding pair-interactions in
viscoelastic media.

In the Newtonian case, the transport phenomena in the
absence of inertia remain diffusion limited even at large Pe. Here,
Pe is a dimensionless parameter that governs the relative impor-
tance of the convective and diffusive transport mechanisms; thus,
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for particles of radius a suspended in a flow with a characteris-
tic velocity gradient of y, the relevant velocity scale is O(ya),
and Pe = ya?/a, a being the thermal diffusivity.! The absence
of the familiar convective enhancement is owing to the exis-
tence of closed streamlines in a thin annulus surrounding the
freely-rotating sphere in a planar linear flow, as a result of which
fluid elements sufficiently close to the sphere circulate around
it in periodic orbits with axes in the vorticity direction. Convec-
tion is therefore no longer effective in carrying heat away from
the particle. One does not observe the familiar boundary layer
enhancement of heat transfer wherein the dimensionless heat
transfer, characterized by the Nusselt number (Nu), grows as an
algebraic power of Pe [5]. In contrast, the Nusselt number for a
torque-free particle in a planar shearing flow tends to an O(1)
constant for Pe — oo [6]. Here, the Nusselt number is defined
as Q/(4rkaAT), Q being the dimensional rate of heat transfer, k
the coefficient of thermal conductivity and AT the temperature
difference between the particle surface and the ambient fluid, so
that Nu = 1 in the conduction limit. In the inertialess limit, the
motion of the Newtonian fluid is governed by the quasi-steady
Stokes equations, and it is the linearity and reversibility of these
equations [7] that leads to closed streamlines in a reference frame
that translates with the neutrally buoyant particle.

One expects that a generic perturbation to the aforementioned
degenerate situation will induce a topological change in the
streamline pattern, in turn significantly altering the rate of heat
transfer from the suspended particle. Recently, Subramanian
and Koch [8,9] have shown that fluid inertia breaks the closed
streamline topology. The resulting spiralling flow has a bi-axial
extensional character, the compressional axis being coincident
with the ambient vorticity direction, and convects heat away
from the sphere in an efficient manner. In this paper, the physical
mechanism that allows for a similarly efficient transfer at large
Pe is the non-Newtonian rheology of the suspending fluid. In
order to make analytical progress, we consider the limit of weak
elastic effects. In other words, the Deborah number, De = yt, is
assumed to be much smaller than unity, so the suspending fluid’s
rheology is governed by the retarded motion expansion [10-12],
and to O(De), satisfies the second-order fluid constitutive equa-
tions; here, t is a characteristic relaxation time of the fluid. Note
that cases of oscillatory (or transient) shear flows allow one to
define two distinct dimensionless measures of non-Newtonian
effects—the ratios of the characteristic relaxation time 7 to the
shear rate, and to the time period of oscillation (@~ 1. These
are known, sometimes interchangeably, as the Deborah and the
Weissenberg numbers (We). However, for the steady flows con-
sidered here, there exist only two time scales, and both De and
We contain the same physics; we have used the former to denote
the ratio of these two time scales. Also, note that the high vis-
cosities of most viscoelastic fluids ensure that inertial forces play
a negligible role, and we will assume this to be the case.

! The present findings are, of course, equally applicable to both heat and
mass transfer and « may be replaced by the mass diffusivity D in the latter
case. However, for ease of description, we restrict ourselves to the former from
hereon.

In a manner similar to the action of inertial forces, the non-
linearity of the equations of motion of a second-order fluid
breaks the symmetry associated with the Stokes limit. For an
ambient two-dimensional linear flow with a non-dimensional
velocity gradient tensor given by
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A being a measure of the relative magnitudes of extension and
vorticity in the ambient flow, the resulting spiralling motion
converges along the vorticity axis and spreads outward along
the equatorial plane of the rotating sphere, thereby resembling
the inertial flow induced by centrifugal forces [9]. Through-
out this paper, all positions will be non-dimensionalized by
the sphere radius a, velocity gradients by y, and stresses by
wy, where p is the zero shear rate viscosity of the suspend-
ing fluid. In the limit Pe > 1, a standard boundary layer
analysis applied to the azimuthally averaged O(De) flow
yields an analytical expression for the Nusselt number; the
azimuthal coordinate is defined in a plane perpendicular to
the ambient vorticity axis. In particular, we find that Nu =
0.478(Pe De)' ((1/2) + (¥2/¥1))/(1 + (¥2/¥1)]'/ in sim-
ple shear flow, where ¥ and ¥; are the first and second normal
stress coefficients defined in the usual manner [10].2

The paper is organized as follows. In Section 2 we write
down the expression for the velocity disturbance, to O(De),
due to a neutrally buoyant torque-free sphere in the linear flow
of a second-order fluid. Thereafter, we plot sample trajectories
obtained from a numerical integration of this velocity field to
illustrate the breaking of the Newtonian symmetry in simple
shear flow, that then enables convection to carry heat away from
the sphere. We also schematically depict the changes in the three-
dimensional streamline topology at O(De) for this case. Later, in
Section 3, we employ a perturbation expansion, valid for small
De, to solve the convection-diffusion equation for the temper-
ature field. In a spherical polar coordinate system aligned with
the vorticity direction of a planar linear flow, it is shown that
one only need consider the O(De) convection in the radial and
meridional directions for large Pe; close to its surface, the leading
order convection along the azimuthal coordinate does not carry
heat away from the sphere. The equation for the azimuthally
averaged temperature field is then solved in the limit of large Pe
using a boundary layer analysis. The thickness of the thermal
boundary layer is only a(PeDe)~1/3) in the limit Pe De > 1,
and it is therefore sufficient to retain the approximate forms of
the radial and meridional velocity components near the surface
of the sphere. Using these we obtain an analytical expression
for the Nusselt number as a function of Pe, De and A. Finally, in
Section 4, we conclude with a discussion of the main results.

2 Note that, in simple shear flow, De = (¥ + ¥,)j/n, so the expression for
the Nusselt number is, in fact, independent of (¥ + ¥»), and the singularity at
¥, /¥ = —1 is only an apparent one.
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