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Abstract

The effect of blockage ratio on the flow characteristics of power-law fluids across a square cylinder confined in a channel has been investigated for
the range of conditions 1 ≤ Re ≤ 45, 0.5 ≤n ≤ 2.0 and β = 1/8, 1/6 and 1/4. Extensive numerical results on the individual and total drag coefficients,
wake length, stream function, vorticity and power-law viscosity on the surface of the square cylinder are reported to determine the combined effects
of the flow behavior index, blockage ratio and Reynolds number. The size of the wake region is influenced more by blockage than by power-law
index. Similarly, drag is also seen to be more influenced by blockage ratio and the Reynolds number than that by the power-law index.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, considerable interest has been shown in study-
ing the flow of Newtonian fluids past cylinders of circular and
square cross-sections oriented normal to the direction of flow.
From a theoretical stand point, the flow past a square cylinder
has received attention due to the variety of flow phenomena
(various flow regimes) exhibited under appropriate kinematic
conditions. Naturally, these changes also manifest at the macro-
scopic level in the way the drag coefficient, wake length depend
on the Reynolds number, and on whether the flow is confined
or unconfined. Furthermore, a reliable knowledge of engineer-
ing parameters (drag coefficient, wake size, etc.) is frequently
needed for the design of cooling towers, support structures, etc.
Consequently, over the years, a wealth of information on flow
and heat transfer characteristics has accumulated in the liter-
ature, for circular cylinders [1–4] and square cylinders [5–15].
Since excellent and extensive reviews of the pertinent studies are
available elsewhere [16–20], only the salient features are reca-
pitulated here. Most of the currently available literature on the
incompressible fluid flow over a confined square cylinder relates
to the high Reynolds number region where the main thrust has
been to investigate the wake phenomena, time-dependent drag
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and lift characteristics, vortex shedding frequency, etc. Recently,
Dhiman et al. have studied the effects of Reynolds (1 ≤ Re ≤ 45)
and Prandtl numbers (0.7 ≤ Pr ≤ 4000) on the flow of Newto-
nian fluids and heat transfer across a square cylinder for both
unconfined [16] and confined [17,18] configurations in cross-
flow. Subsequently, this study has been extended to the flow
and/or heat transfer of power-law fluids past an unconfined
square cylinder [19–21] in the steady flow regime.

Much less is known about the effect of blockage on the flow
of and heat transfer to power-law fluids, even for circular cylin-
ders [22,23], although D’Alessio and Pascal [24], Chhabra et al.
[25] and Soares et al. [26] have reported the effect of the domain
to gradually diminish as the Reynolds number is increased for
the cross-flow of power-law fluids over a circular cylinder. This
finding is qualitatively consistent with the experimental obser-
vations made in the free fall conditions [27,28]. Broadly, an
increase in the blockage ratio and/or a decrease in the value
of the power-law index has qualitatively similar effects on the
streamline and vorticity patterns.

For the analogous 2D, steady flow past a square cylinder, as
far as known to us, there has been only one numerical study
[29] for a single value of the blockage ratio of 1/8. Using a
rather coarse and uniform grid over the range of conditions as
5 ≤ Re ≤ 40, 5 ≤ Pe ≤ 400 and 0.5 ≤ n ≤ 1.4. It was found that
shear-thinning behavior not only reduces the size of the recircu-
lation region, but also delays the onset of wake formation, and
shear-thickening fluids show the opposite effect on the wake
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formation. Also, the temperature field was seen to decay very
quickly at high Peclet numbers in shear-thinning fluids, with the
reverse behavior being observed in shear-thickening fluids.

Overall, shear-thinning fluid behavior facilitates heat transfer,
whereas shear-thickening behavior impedes it. Subsequently,
Nitin and Chhabra [30] extended this work for the power-law
flow past an obstacle of rectangular cross-section for the identi-
cal ranges of physical parameters. Therefore, only preliminary
and scant numerical results are available in the literature on
the effects of blockage ratio for the flow of power-law fluids
past a square cylinder even in the steady cross-flow regime
(1 ≤ Re ≤ 45). Thus, this study aims to explore the effect of
power-law index (n) on the flow across an isolated square
cylinder confined by planar walls for the range of conditions
1 ≤ Re ≤ 45 and 0.5 ≤ n ≤ 2.0 and for three values of the block-
age ratio, β = 1/8, 1/6 and 1/4 which are well within the 2D
steady flow regime.

2. Problem statement and formulation

The system of interest here is the steady bounded 2D
flow of an incompressible power-law fluid in a channel with
a square cylinder placed symmetrically on the centerline, as
shown in Fig. 1. The square cylinder with side b, also the non-
dimensionalizing length scale, is exposed to a fully developed
(parabolic for a Newtonian fluid) velocity field with a maxi-
mum velocity of Umax at the channel inlet. The non-dimensional
upstream distance between the inlet plane and the front surface
of the cylinder is Xu/b and the downstream distance between
the rear surface of the cylinder and the exit plane is Xd/b with
the total length of the computational domain being L1/b in the
axial direction. The non-dimensional vertical distance between
the upper and lower bounding walls, L2/b in the lateral direction,
defines the blockage ratio (β = b/L2).

The dimensionless forms of the continuity, the x- and y-
components of Cauchy’s equations, are given below. Since the
governing field equations are given in detail elsewhere [19],
these are presented only briefly here.

The power-law fluid behavior is represented by

τIJ = 2ηεIJ (1)

where τIJ and εIJ are the components of the stress and of
the rate of deformation tensors, respectively, e.g., εxx = ∂u/∂x,

Fig. 1. Schematics of the flow around a square cylinder confined in a channel.

εyy = ∂v/∂y, εxy = 1/2[(∂u/∂y) + (∂v/∂x)] and the power-law
viscosity is given by,
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Combining Eqs. (1)–(3) with the momentum equations, the gov-
erning equations in their conservative form are written as follows

Continuity:

∂u

∂x
+ ∂v

∂y
= 0 (4)

x-Momentum:

∂u

∂t
+ ∂(uu)

∂x
+ ∂(vu)

∂y
= −∂p

∂x
+ η

Re

(
∂2u

∂x2 + ∂2u

∂y2

)

+ 2

Re

(
εxx
∂η

∂x
+ εyx

∂η

∂y

)
(5)

y-Momentum:
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where Re is the Reynolds number defined as ρU2−n
max b

n/m. Here,
m and ρ are the power-law consistency index and the density of
the fluid, respectively.

The corresponding dimensionless boundary conditions for
this flow configuration may be written as follows (Fig. 1):

• At the inlet boundary:

u = 1 − (2βy)n+1/n; v = 0

where β = b/L2 and 0 ≤y ≤ L2/2b
• At the upper and lower boundary walls:

u = 0; v = 0 (no-slip condition)

• At the surface of the square cylinder:

u = 0; v = 0 (no-slip condition)

• At the exit boundary:
The homogeneous Neumann boundary condition, i.e.,

∂φ/∂x = 0 is employed here, whereφ is the dependent variable,
u or v.
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