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Abstract

This paper presents the numerical solution of non-linear yield stress phenomena by using a new mixed anisotropic auto-adaptive finite element
method. The Poiseuille flow of a Bingham fluid with slip yield boundary condition at the wall is considered. Despite its practical interest, for
instance for pipeline flows of yield-stress fluids such as concrete and cements, this problem has not been addressed yet to our knowledge. The case
of a pipe with a square section has been investigated in detail. The computations cover the full range of the two main dimensionless numbers and
exhibit complex flow patterns: all the different flow regimes are completely identified.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The flow of a viscoplastic fluid in a straight pipe with con-
stant cross-section and with no-slip condition at the wall has been
considered several times in the literature. In 1960s, an extensive
mathematical study was presented by Mossolov and Miasnikov
[1–3]. These authors have presented impressive results on the
existence and shape of rigid zones in the flow. In particular,
they were the first to characterize the critical value of the yield
stress above which the flow stops. See also Huilgol [4] for a
recent application of this approach to several pipe shapes with
symmetric cross-section. Next, Duvaut and Lions [5] clarified
the the problem of existence and uniqueness of a solution and
renewed the mathematical study by using the powerful tools of
variational inequalities. They recovered some properties already
established by Mossolov and Miasnikov, and found new inter-
esting properties.

The numerical study of this flow problem was first consid-
ered in 1972 by Fortin [6]. More recently, the regularized model
of Bercovier and Engelman [7] has been used by Taylor and
Wilson [8] to study the case of a square cross-section. The aug-
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mented Lagrangian algorithm from Fortin and Glowinski [9]
has been used by Huilgol and Panizza [10] to solve the case
of an annulus and of an L-shaped cross-section, with the Bing-
ham rheology. More recently, Huilgol and You [11] have derived
the algorithm for two other viscoplastic rheologies (Casson and
Herschel-Bulkley).

In 2001, Saramito and Roquet revisited the classical fully
developed Poiseuille flow of a Bingham yield-stress fluid in
pipe [12] with non-circular cross-section. Addressing the case
of a square cross-section, they pointed out the lack of precision
of the previous numerical computations, that were not able to
compute accurately the yield surfaces that separate the shear
region from the central plug and the dead zones. They proposed
a new mixed anisotropic auto-adaptive finite element method
coupled to the augmented Lagrangian algorithm. The mesh
refinement is expected to capture accurately the free boundaries
of the rigid zones. Based on a priori error estimate on adapted
meshes, Roquet et al. [13] performed the numerical analysis of
the method and showed that it converges with an optimal global
order of accuracy. Finally, the extension of this approach to more
general flows of a Bingham fluid is addressed in [14] where the
authors considered the flow around a cylinder.

Slip occurs in the flow of two-phase systems, such as poly-
mer solutions, emulsions, and particle suspensions, because of
the displacement of the disperse phase away from solid bound-
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aries [15]. It may be the result of either a static depletion effect
at the solid boundaries or a shear induced particle migration.
In any case, there is, close to the wall, a thin layer of fluid of
lower viscosity than that of the bulk material, so that the shear
amplitude is much larger in this layer than in the rest of the flow
domain. This phenomenon appears to be more pronounced when
the material possesses a yield stress, such as pastes [16–18]. It
is known from experimental results [19] that wall slip occurs
only when the wall shear stress exceeds a certain value. In prac-
tical viscoplastic flow problems such as concrete pumping (see
e.g. [20,21]), it also appears that a no-slip boundary condition
is not a satisfactory model. The fluid slips when the tangential
stress exceeds a critical value, and, otherwise the fluid sticks at
the wall. This critical value may be considered as an intrinsic
characteristic of the material and its relation to the wall: in the
following, it will be called the yield-force of the fluid.

The first attempt to formulate a slip yield boundary condition
is due in 1965 to Pearson and Petrie [22]. In 1991, Fortin et al.
[23], used it from a computational point of view for the flow of a
Newtonian fluid for the sudden contraction geometry, and next,
in 2004 by Roquet and Saramito [24] for the straight pipe flow
with a square cross-section. In 1998, Huilgol [25] analyzed the
variational principle of a yield-stress fluid together with a slip
yield condition. From a mathematical point of view, there is an
analogy of the slip of fluids on a wall and the slip solids on over
surfaces. In the context of solid mechanics and contact problems,
Coulomb type friction has been studied by many authors: refer
e.g. to Haslinger et al. [26, p. 377] or Ionescu and Vernescu [27]
for the numerical analysis and to Kikuchi and Oden [28] for the
finite element approximation. In this case, the slip yield stress
is no more a constant, and should be replaced by a quantity
that depends upon the pressure at the boundary. Nevertheless,
previous works do not study the stick–slip transition. In this
paper, since our purpose is to study a new numerical algorithm
for the stick–slip transition capturing, we suppose that the slip
yield stress is a constant.

The aim of this paper is to extend the technique presented in
Saramito and Roquet [12,24] in order to apply it to the flow of
a Bingham fluid in a straight pipe with constant cross-section
with the stick–slip law at the wall. In Section 2, all the gov-
erning laws of the flow model are presented, ending with the
non-dimensional formulation of the flow of a Bingham fluid
with the stick–slip law in a straight pipe. In the third section,
the numerical method is described. The last section presents all
the numerical results and the discussion. The role of the two
dimensionless numbers associated to the yield parameters of
the flow structure are investigated in detail. The computations
cover the full range of the two main dimensionless numbers and
exhibit complex flow patterns: all the different flow regimes are
completely identified.

2. Problem statement

The general equations for the flow of a Bingham fluid with
the stick–slip law is given first. Then, it is specialized for the
case of a straight pipe with constant cross-section.

2.1. Constitutive equation and conservation laws

Let σtot denotes the total Cauchy stress tensor:

σtot = −p I + σ, (1)

where σ denotes its deviatoric part, and p the pressure. In this
paper, the fluid is supposed to be viscoplastic, and the relation
between σ and D(u) is given by the Bingham model [29,30]:⎧⎨
⎩

σ = 2ηD(u) + σ0
D(u)

|D(u)| when D(u) /= 0,

|σ| ≤ σ0 when D(u) = 0,

(2)

here σ0 ≥ 0 is the yield stress, η > 0 is the constant viscosity, u
is the velocity field and D(u) = (∇u + ∇uT)/2. For any tensor
τ = (τij), the notation |τ| represents the matrix norm:

|τ| =
(τ : τ

2

)1/2 = 1√
2

⎛
⎝∑

i,j

τij

⎞
⎠

1/2

. (3)

The constitutive Eq. (2) writes equivalently:

D(u) =
⎧⎨
⎩

(
1 − σ0

|σ|
)

σ

2η
when |σ| > σ0,

0 otherwise.
(4)

The slip boundary condition reads:

ut =
⎧⎨
⎩

−
(

1 − s0

|σnt|
)

σnt

cf
when |σnt| > s0,

0 otherwise,
(5)

where s0 ≥ 0 the slip yield stress and cf > 0 the friction dissi-
pation coefficient. The notations ut and σnt are defined by

ut = u − (u.n) n,

σnt = σ.n − (σnn) n,
(6)

where σnn = (σ.n).n and n is the unit outward normal vector.
For any vector field v, the notation |.| represents the vector norm
|v| = (v.v)1/2. Notice that the vector field σnt is tangent to the
boundary and that σnn is a scalar field defined on the boundary.
Observe the analogy of structure between the slip law (5) and
the Bingham constitutive Eq. (4). The slip relation can be also
written as:⎧⎨
⎩

σnt = −cfut − s0
ut

|ut| when |ut| /= 0,

|σnt| ≤ s0 when |ut| = 0.

(7)

Again, observe the analogy between (7) and (2).
The boundary condition is complemented by a condition

expressing that the fluid does not cross the boundary:

u · n = 0. (8)

We remark that for s0 = 0, one obtains the classical linear slip
boundary condition: the fluid slips for any non-vanishing shear
stress σnt. For s0 > 0, boundary parts where the fluid sticks can
be observed. As s0 becomes larger, these stick regions develop.
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