[Construction and Building Materials 168 \(2018\) 532–546](https://doi.org/10.1016/j.conbuildmat.2018.02.125)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09500618)

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Research on extending the fatigue life of railway steel bridges by using intelligent control

Jia Liu $^{\rm a, *},$ Weilian Qu $^{\rm a}$, Nikolaos Nikitas $^{\rm b, *},$ Zeliang Ji $^{\rm c}$

a Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, China b School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK

^c School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

highlights are the control of the c

Optimum multi-scale structural analysis combining shell and solid FE models of a bridge.

- Calculating fatigue life of a steel bridge considering both dynamic and thermal actions.
- Smart vibration control towards optimising fatigue performance of steel bridges.
- Developing a case study application for the Poyang Lake Bridge in China.

Article history: Received 31 October 2017 Received in revised form 18 February 2018 Accepted 19 February 2018

Keywords: Sub-model/multi-scale method Railway steel bridges Fatigue Structural control

ARSTRACT

This paper investigates the potential of a vibration control-inspired method towards extending the fatigue life of railway steel bridges. Based on coupled thermal-mechanical and vehicle-track analysis, both the residual stresses from welding and these from traffic on the bridge are obtained. Subsequently, a multi-scale approach with a shell Finite Element (FE) model of the whole bridge and a solid FE model of its critical joints is put forward. The equation of motion is established for the controlled bridge, equipped with a Magnetorheological-Tuned Mass Damper (MR-TMD) system, while the combination of excitation, welding and control effects is practiced through own-developed packages and commercial software sub-model routines. The framework is showcased for the study of the Poyang Lake Railway Bridge in China. After obtaining the controlled stress states at the critical welded joint, the fatigue crack initial life is evaluated by using the critical plane method and the linear cumulative damage theory. Simulation results indicate that the multi-scale modelling approach followed, meets the accuracy needs for capturing the cracking process of the welded joint with high computational efficiency. The MR-TMD system, even when moderately reducing the critical joint stress amplitudes, can improve substantially the overall bridge fatigue resistance over the uncontrolled structure.

2018 Elsevier Ltd. All rights reserved.

1. Introduction

Railway steel bridges are very common long span bridges, constituting a large sector of the traffic communication network. Owing to their long time and frequent train traffic, cumulative damage may occur in their welded regions. In particular, stress concentrations can easily be generated under the combined action of multi-axial dynamic-excitation stress and welding-owed residual stress. Such could further lead to fatigue damage that sets off as crack initiation and, in a worst case scenario, could progress to failure of parts of the bridge, putting a serious concern in terms

⇑ Corresponding authors. E-mail address: n.nikitas@leeds.ac.uk (N. Nikitas). of life cycle design. Collapse and damage of steel bridges caused by cumulative fatigue action have been frequently reported across the world up to this date $[1-3]$. Therefore, it is important to propose and adopt effective means to prolong the fatigue crack initial life of steel bridge parts; such could subsequently extend the service life of railway steel bridges, and reduce the risk, economic losses and casualties caused by potential damage.

In the past decades, many scholars have carried out considerable theoretical and experimental research in the field of bridge fatigue life assessment. Namely, within the achievements produced in the field one can quote the establishment of fatigue damage models, the study of initial crack mechanisms and the evaluation of a structure's overall fatigue life $[4,5]$. Li and Chan, for instance, applied continuous damage mechanics to their

Nomenclature

- the y directional thermal conductivity factors
- k_z the z directional thermal conductivity factors
- λ efficiency of the heat source
 U_w welding voltage
- U_w welding voltage
 I_w welding current
- welding current
- V_H volume of the welding unit
- ρ the parent material density
C specific heat capacity
- $\begin{array}{ll}\nC & \text{specific heat capacity} \\
T & \text{the joint temperature}\n\end{array}$
- the joint temperature generated by the welding
- t the independent time variable
- N_x the perpendicular to the boundary of x direction cosines
- N_y the perpendicular to the boundary of y direction cosines
 N_z the perpendicular to the boundary of z direction cosines
- the perpendicular to the boundary of z direction cosines
- h_c the heat transfer coefficient of convection
- h_r the heat transfer coefficient of radiation
- q_s boundary heat flux
 T_r temperature of radi
- T_r temperature of radiation
 T_{∞} surrounding temperature
- T_{∞} surrounding temperature
 f_f the heat source distribu the heat source distribution of the double ellipsoid model for front heat source
- f_r the heat source distribution of the double ellipsoid model for rear heat source
- q_f the heat source of the double ellipsoid model for front heat source
- q_r the heat source of the double ellipsoid model for front heat source
- v welding speed
- x_0 the x coordinate of the welding initial position
- a_1 arc welding parameter
- a_2 arc welding parameter
- b arc welding parameter
- c arc welding parameter $\{d\sigma\}$ vector of stress
- ${d\sigma}$ vector of stress
 ${de}$ vector of strain
- ^fdeg vector of strain dT temperature increment
-
- [D] elastic or elastic-plastic constitutive law matrix ${C}$ temperature dependence vector
- ${C}$ temperature dependence vector
 ${M_c}$ weight of the train car weight of the train car
-
- J_c inertia of the train car
 M_t weight of bogies weight of bogies
-
- J_t inertia of bogies
 $M_{\rm uni}$ the wheel's weig the wheel's weight
- v_{wi} vertical displacement of each wheel
- v_{ti} vertical displacement of the bogies
- φ_{ti} rotation angle of the bogies
 ν_c vertical displacement of the
- vertical displacement of the repeating train car
- φ_c rotation of the repeating train car u_1, u_2 the rail vertical displacements
- the rail vertical displacements
- u_3, u_4 the railway bridge sleeper vertical displacements
- u_5, u_6 the ballast vertical displacement
- k_{v1} the elastic coefficients of the fastener k_{v2} the elastic coefficients of the ballast
- k_{v3} the elastic coefficients of the railway bridge sleeper
- c_{y1} the damping coefficients of again the fastener
- c_{v2} the damping coefficients of again ballast
- c_{y3} the damping coefficients of again the railway bridge
- sleeper
- M_v the mass matrices of the train
- C_v the damping matrices of the train K_v stiffness matrices of the train
- a_v the acceleration vector
- a_v the velocity vector
-
- a_v the displacement vector
 Q_V the force vector the force vector
- M_1 the mass, damping vector of the track
 C_1 the damping vector of the track the damping vector of the track K_1 the stiffness matrices vector of the track
 Q_1 the load vector of the track the load vector of the track e the element identifier of the 2D track beam
 k_H the equivalent spring stiffness the equivalent spring stiffness u_i the interpolating function of u_1 and u_2 of the nodal displacement M_C the mass matrices of the coupled system
 C_C the damping matrices of the coupled system C_C the damping matrices of the coupled system
 K_C the stiffness matrices of the coupled system the stiffness matrices of the coupled system Q_C the load vector
C_{VI}, C_{IV} the coupling da C_{VI} , C_{IV} the coupling damping
O spatial angular frequence Ω spatial angular frequency variable
 Ω_c the truncated spatial angular freq the truncated spatial angular frequency of the vertical profile irregularity Ω_r the truncated spatial angular frequency of the alignment irregularity A_v the high interference roughness coefficient Z_r , Z the vertical displacements of the bridge de the vertical displacements of the bridge deck and TMD mass respectively \ddot{x} the acceleration vector of the bridge discrete model \dot{x} the velocity vector of the bridge discrete model x the displacement vector of the bridge discrete model M the mass matrices C the stiffness matrices
K the damping matrices the damping matrices H locator matrix of installed MR-TMD system $F(t)$ the external force input
U_{MR-TMD} the control force vector the control force vector provided by the MR-TMD system K_{Ti} the stiffness properties of the i^{th} TMD in the MR-TMD C_{Ti} the damping properties of the ith TMD in the MR-TMD F_{MRi} the damping force of the *i*th MR damper C_d the viscous damping coefficient
 F_d the coefficient of controllable Co F_d the coefficient of controllable Coulomb damping force K_d the equivalent axial stiffness of the damper the equivalent axial stiffness of the damper f_{0i} the output force deviation caused by the damper accumulator e_b the Bingham sliding displacement C_{ds} the coefficient of viscous damping of damper on the condition of zero electric field strength F_{ds} the coefficient of controllable Coulomb damping force of damper on the condition of zero electric field strength K_{ds} the equivalent axial stiffness of damper on the condition of zero electric field strength C_{dd} the voltage sensitivity of viscous damping of the damper F_{dd} the voltage sensitivity of controllable Coulomb damping force of the damper K_{dd} the voltage sensitivity of equivalent axial stiffness of the damper η the time coefficient of the damper's magnetic hysteresis response I the applied current intensity u the internal variable reflecting the relationship between
- model parameters and current intensity.
- $F_{d\text{max}}$ the maximum coefficient
- $F_{d \text{min}}$ the minimum coefficient
- ξ the adjustment factor of the Coulomb damping force
 ε_x the x-directional normal strain
- ε_x the x-directional normal strain
 ε_v the y-directional normal strain
- ε_y the y -directional normal strain
 ε_z the z -directional normal strain
- ϵ_z the *z*-directional normal strain
 ϵ_{xx} the *xz*-directional shear strain
- ε_{xy} the xz -directional shear strain
 ε_{yz} the vz -directional shear strain
- ε_{yz} the yz-directional shear strain

Download English Version:

<https://daneshyari.com/en/article/6714914>

Download Persian Version:

<https://daneshyari.com/article/6714914>

[Daneshyari.com](https://daneshyari.com)