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Abstract

We discuss how matrix-free/timestepper algorithms can efficiently be used with dynamic non-Newtonian fluid mechanics simulators in performing
systematic stability/bifurcation analysis. The timestepper approach to bifurcation analysis of large-scale systems is applied to the plane Poiseuille
flow of an Oldroyd-B fluid with non-monotonic slip at the wall, in order to further investigate a mechanism of extrusion instability based on the
combination of viscoelasticity and non-monotonic slip. Due to the non-monotonicity of the slip equation the resulting steady-state flow curve is
non-monotonic and unstable steady states appear in the negative-slope regime. It has been known that self-sustained oscillations of the pressure
gradient are obtained when an unstable steady state is perturbed [M.M. Fyrillas, G.C. Georgiou, D. Vlassopoulos, S.G. Hatzikiriakos, A mechanism
for extrusion instabilities in polymer melts, Polymer Eng. Sci. 39 (1999) 2498–2504].

Treating the simulator of a distributed parameter model describing the dynamics of the above flow as an input–output “black-box” timestepper of
the state variables, stable and unstable branches of both equilibrium and periodic oscillating solutions are computed and their stability is examined.
It is shown for the first time how equilibrium solutions lose stability to oscillating ones through a subcritical Hopf bifurcation point which generates
a branch of unstable limit cycles and how the stable periodic solutions lose their stability through a critical point which marks the onset of the
unstable limit cycles. This implicates the coexistence of stable equilibria with stable and unstable periodic solutions in a narrow range of volumetric
flow rates.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The complex viscoelastic character of polymers, the normal
stress differences and the high extensional viscosity and wall
slip may lead to non-linear phenomena and undesirable insta-
bilities in polymer processing. Time-periodic phenomena are
often observed, such as pressure oscillations at fixed volumetric
flow rate in the stick-slip extrusion instability and draw res-
onance, which gives rise to spontaneous thickness and width
oscillations in film casting, to a periodic fluctuation of the cross-
sectional area in fiber spinning, and to periodic fluctuations of

∗ Corresponding author. Tel.: +30 210 772 3950; fax: +30 210 772 1302.
E-mail address: ksiet@mail.ntua.gr (C.I. Siettos).

the bubble diameter in film blowing [1]. For example, draw res-
onance in the latter process corresponds to a self-sustained limit
cycle type supercritical Hopf bifurcation [2]. In such flows,
in addition to the steady-state solutions and linear stability,
transient studies and non-linear stability analyses are neces-
sary, in order to develop techniques for process optimization
[2].

Modelling and understanding the mechanisms of such flow
instabilities by determining the regions and the critical points
where these occur are of major importance. For this purpose,
the efficient simulation of the transient behavior of the underly-
ing physical system, usually expressed in terms of a system of
ordinary differential and algebraic equations or integro-partial
differential algebraic equations, is required. Over the last years,
some excellent temporal (direct integration in time) commercial
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and home-made fluid mechanics simulation packages are the
tools of choice. Such packages, which incorporate many man-
years of effort and expertise, may also allow the computation
of steady states using Newton-like solvers and comprise a very
good option even for large-scale systems.

However, other important tasks, such as the exact location
of the critical points that mark the onset of instabilities, as well
as the dependence of the location on parameter values, can-
not be obtained easily using temporal simulations. Furthermore,
the tracing of branches of unstable steady states is often (in
the absence of good initial guesses) impossible for large-scale
systems. For the systematic and accurate analysis of the model
dynamics, one has to resort to bifurcation analysis. Numerical
bifurcation theory provides an arsenal of algorithms and soft-
ware packages, such as AUTO, CONTENT and MATCONT for
tasks such as the continuation of stable or unstable steady states
and limit cycles, and the continuation of critical points [3–11].
While, these software packages are invaluable tools for per-
forming systematic analysis for small- to medium-scale systems,
there are some drawbacks in using them. Most of them require
as input the system evolution equations, which are assumed to
be explicitly available in discretized form. Linking the evolution
equations with such packages is not a trivial task. These packages
often use a Newton-like method, which requires the calculation
of the Jacobian of the system (i.e. the matrix with the partial
derivatives of the “right-hand-sides” of the discretized govern-
ing ODEs or the PDEs, with respect to the discrete unknowns).
This imposes a serious computational burden in the analysis of
large-scale systems. But even for small- to medium-size systems,
tasks, such as the continuation of limit cycles or the continua-
tion of turning points of limit cycles, become overwhelmingly
computationally expensive or even prohibitive; these computa-
tions are usually performed by augmenting the system space
with one more variable corresponding to the normalized time
variable. The latter turns an initial-value problem to a boundary-
value one, with a consequent vast increase in the size of the
problem.

The solution to the “curse of dimensionality” comes from
the matrix-free algorithms of iterative linear algebra [12] such
as the Recursive Projection Method (RPM) of Shroff and
Keller [13]. Here one does not need to numerically compute
a matrix, such as the Jacobian of the system, in order to per-
form tasks such as solving, using for example the Newton
method, systems of non-linear equations and stability analysis.
What is required is the calculation of matrix-vector products
which can be obtained by treating the dynamic simulators –
the time integration codes (timesteppers) – as input–output
“black-boxes” that take an initial condition and give the
result of the integration after a prescribed time interval. These
algorithms acquire the necessary information by calling the
“black-box” timesteppers from appropriate nearby initial con-
ditions and for relatively short-time intervals. This “wrapping”
of matrix-free algorithms around industrial process simulators
(like gPROMS) has been recently discussed by Siettos et al.
[14] who applied the RPM for the efficient location of the cycle
steady states and stability analysis of a periodically forced pro-
cess.

The purpose of this paper is twofold: (a) to introduce the
concept of matrix-free/timestepper approach that enables non-
Newtonian fluid dynamics simulators to perform efficiently
numerical stability/bifurcation analysis (such as continuation of
both steady states and limit cycles and the computation of their
stability); (b) to demonstrate the applicability of the method to
viscoelastic flow problems in performing systematic numerical
bifurcation and stability analysis of periodic solutions.

For the latter objective, the time-dependent, one-dimensional
plane Poiseuille flow of an Oldroyd-B fluid with non-monotonic
slip at the wall has been chosen. This problem has been con-
sidered by Georgiou and co-workers [15–17] who studied the
combined effect of elasticity and non-monotonic slip and exam-
ined whether this can provide an explanation for the stick-slip
extrusion instability [1]. All theoretical explanations suggested
in the literature for this instability are based on the non-
monotonicity of the flow curve (the plot of the wall shear
stress versus the apparent shear rate, or, equivalently, the plot
of the pressure gradient versus the volumetric flow rate), which
exhibits a maximum and a minimum, and the fact that steady-
state solutions corresponding to the negative-slope regime of the
flow curve are unstable [18]. The transitions from the maximum
of the flow curve to the right positive-slope branch and from the
minimum to the left positive-slope branch lead to a limit cycle,
which describes the observed pressure and flow rate oscillations
in flow rate-controlled experiments [19].

Non-monotonicity of the flow curve can be obtained by a
non-monotonic slip law (adhesive failure) or by a non-monotone
constitutive equation (bulk failure). In the proposed explanations
involving slip, this is combined with either compressibility or
elasticity. The important role of slip in the stick-slip instability,
indicated by both indirect and direct wall slip measurements, is
also supported by the fact that only mechanisms involving slip
lead to self-sustained pressure oscillations and generate waves
on the extrudate surface. However, in addition to the experi-
mental evidence for the importance of the compressibility of the
melt in the reservoir, only the compressibility/slip mechanism
can lead to persistent pressure and flow rate oscillations between
the two stable branches of the flow curve. The periodic transi-
tions between a weak slip (or no-slip) and a strong slip at the
capillary wall (i.e. the jumps between the two branches of the
flow curve) which lead to the pressure and flow rate oscillations
are sustained by the compressibility of the melt in the reservoir.
This mechanism has been employed in various one-dimensional
phenomenological models describing the stick-slip instability
(see [20] and references therein) and in two-dimensional sim-
ulations of both Poiseuille and extrudate-swell flows (see [19]
and references therein).

Viscoelasticity may replace compressibility and, when com-
bined with non-monotonic slip, can act as a storage of elastic
energy generating self-sustained pressure oscillations and waves
on the extrudate surface in the stick-slip regime. Due to the
absence of compressibility, however, this mechanism cannot
generate jumps of the volumetric flow rate between the two sta-
ble branches of the flow curve and leads only to small-amplitude
small-wavelength distortions of the extrudate surface consis-
tent with sharkskin rather than with the stick-slip instability.
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