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h i g h l i g h t s

� Algorithm for randomly distributing 3D inclusions.
� Employment of real grading curves.
� Effective simulation of different packing densities.
� Novel dislocation procedure.
� Procedure suitable for modelling composite materials.
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a b s t r a c t

Within the framework of numerical algorithms for the three-dimensional random packing of granular
materials this work presents an innovative formulation for polydispersed ellipsoidal particles, including
an overlapping detection algorithm for an optimized simulation of the mesostructure of geomaterials,
particularly concrete.
Granular composite cement-based materials can be so reconstructed with adequate precision in terms

of grain size distribution. Specifically, the algorithm performance towards the assumed inclusion shape
(ellipsoidal or spherical) and degree of regularity (round or irregular) is here discussed. Examples on real
grading curves prove that this approach is effective.
The advantages of the proposed method for computational mechanics purposes are also disclosed

when properly interfaced with visualization CAD (Computer Aided Design) tools.
� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The packing density can strongly influence the performance of
granular materials like concrete and the costs related to its produc-
tion. The basic concept of a packing method is to reduce the voids
content by studying an optimum mixture of coarse and fine aggre-
gates, so minimizing the amount of the required binder and water
in the mix. The packing of a cementitious material depends basi-
cally on the aggregates size and shape and on the applied packing
method itself. While the first parameter is determined by choosing
recommended grading curves and the latter is easily guaranteed by
a satisfactory vibration during casting, the second one can not
always be optimized since it is strictly related to aggregate avail-
ability. He et al. [1] demonstrated for mono-sized particles that

polyhedra with larger sphericity can be packed to a higher density.
Sphericity is defined as the surface area ratio of a sphere with a
particle, equivalent in volume. Xu and Chen [2] reached a similar
conclusion for polydispersed ellipsoidal particles. Similarly in 2D,
Xu et al. [3] found that, when ellipses slightly deviate from circles,
the packing fraction rises to the maximum value, otherwise it
decreases.

When numerically modeling concrete at the mesoscopic scale,
i.e. at the scale of its constituents, it is significant to reproduce
the real particle packing which is related to the w=c ratio and
therefore, practically, to concrete workability and final strength.

The packing of spheres was first theoretically and experimen-
tally investigated in [4] for mixes with very large size difference
between the fine and coarse particles. Later Stovall et al. [5] devel-
oped a model to predict the packing density of multi-sized grain
mixtures, including the loosening and wall effects, i.e. taking into
account particle interactions and interactions of the particles at
the boundaries.

With the advances in computer simulations many works have
focused on the development of algorithms for the random
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distribution of non-overlapping particles. In most studies the
assumption of spherical aggregates is made for sake of simplicity
[6–8], however some works deal with more complex geometries,
e.g. Wittmann et al. [9] generated 2D rounded aggregates by using
the morphological law developed by Beddow and Meloy [10] and
angular aggregates as polygons, of randomly varying number of
edges and angles; more recently Wang et al. [11] developed a
procedure for generating random aggregate structures for rounded
and angular aggregates based on Wittmann’s findings but here
angular aggregates are generated as polygons with prescribed
elongation ratios, rather than just as randomly shaped polygons.
Three-dimensional studies involving ellipsoids are reported in
[12–15], while Williams and Philipse [16] used spherocylinders
to better simulate the elongation of real particles, such as fibers.

As regards the packing algorithm, two are mainly adopted in the
scientific literature: the take-and-place method [9,11,17], which
consists in randomly positioning a number of particles necessary
to satisfy the sieving classes in which the grading curve can be
divided, proceeding from large to small particles; and the divide-
and-fill method [18], which consists in subdividing the whole
domain in 2D or 3D into sub-regions and fill them with grain par-
ticles, based on the grading curve and the aggregate fraction. An
optimized algorithm to pack very large volumes of spherical enti-
ties, enriched by a genetic module, has been more recently devel-
oped in [7]: this method is derived from [19] and it is found to
significantly improve the speed of convergence of the sequential
packing algorithm of spheres. In line with a ‘‘parent–child” model,
it adaptively shifts and shrinks the search space in the control vol-
ume by employing feasible (with satisfied constraints) and infeasi-
ble (with unsatisfied constraints) spheres in the population of
‘‘children” to find a sphere with maximum radius. By doing so
the module can search the free space within a domain to inscribe
the maximum-sized spheres among the previously packed ones,
in an optimal way.

Within this framework the work proposes an original,
mathematically-based formulation for the ellipsoidal particle size
distribution within a 3D space and it discusses its performance
when spherical inclusions are employed. The method takes inspi-
ration from the divide-and-fill method but it is improved by the
introduction of a control step of new concept and implementation,
which allows further packing and an optimized use of the free
available space. The study is directed towards a three-
dimensional modeling of cement-based composite materials at
the mesocopic scale in order to manage space discretization in
agreement with the Finite Element Method (FEM) and perform
numerical analyses in the context of continuum mechanics [20].

2. Grading curves in concrete materials

The size distribution of aggregate particles in concrete can be
defined either by means of grading curves or from sieve analyses.

Several types of ideal grading curves can be applied, the most
known and acceptable of them is Fuller’s curve [21], which is
described by a simple equation relating the percentage of aggre-
gates passing through one sieve Pi to the corresponding sieve
diameter di and the maximum dimension of the aggregates Dmax:

Pi ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di=Dmax:

q
ð1Þ

It is well known that Fuller’s curve gives good results for low-
workability mixes. To obtain a better compaction maintaining a
good workability, Bolomey’s curve [22] is to be preferred. Eq. (1)
is modified according to Bolomey into:

Pi ¼ Aþ ð100� AÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di=Dmax

q
ð2Þ

where the parameter A accounts for the impact of adding fine par-
ticles in the mix and it derives from imposing an arbitrary percent-
age A at the 80 lm sieve.

In general, grading curves do not consider the geometry of
aggregates, but only the maximum diameter and that related to
the current passing percentage. However the geometry must play
a role in the compaction process which can not be neglected when
modeling a mesoscopic structure that resembles the real one.

European standards [23] give some indications on how to deter-
mine the shape index of coarse aggregates; the method applies for
natural or artificial aggregates, including lightweight aggregates,
and it classifies an aggregate according to two main dimensions:
the length of a grain L and its thickness E, defined respectively as
the maximum and the minimum distance between two parallel
planes tangential to the particle surface (Fig. 1). An aspect ratio
L=E greater than 3 accounts for non-cubic particles and, in this
sense, the test leads to the evaluation of the percentage of cubic
or non-cubic grain fractions of a given mix.

If one accepts that, in line with the European standard, the non-
cubic condition defines the usability limit of aggregates in a mix,
particles with ratio 1 6 L=E 6 3 can be conveniently approximated
by ellipsoids more than spheres (for which L=E ¼ 1 Fig. 2) and in
this range an ellipsoidal representation is still acceptable; it may
be not so for higher L=E ratios.

3. Theoretical background

3.1. Ellipsoidal formulation

An ellipsoid surface satisfies the following equation:

f ðxÞ ¼ x2

l2x
þ y2

l2y
þ z2

l2z
� 1 ¼ 0 ð3Þ

where x; y; z are the position vector components of vector:

x ¼ ½x; y; z�T while l ¼ ½lx; ly; lz� are the semidiameters of the ellipses
obtained by sectioning the ellipsoids with the coordinate planes
(Fig. 3).

Eq. (3) in matrix notation yields [24]:

f ðxÞ ¼ xTBx ð4Þ

Fig. 1. Aggregate ratio L=E ¼ 1; aggregate ratio L=E ¼ 3.

Fig. 2. Spherical aggregate a); ellipsoidal aggregate b).
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