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Consistent closure schemes for statistical models of anisotropic fluids
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Abstract

We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results.
For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n− 2)/2 scalar functions Sn(S2) in terms of
a scalar argument S2, with Sn(0) = 0 and Sn(1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the
distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can
be characterized by a single S4(S2) function. We propose using the simple model dependent convex shaped equilibrium relationship between S4

and S2 to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new
against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess–Doi Fokker–Planck equation for nematic
and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational
flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are
valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures
in particular in the temperature regime T ∈ [0.6,∞]× TNI with the nematic-isotropic transition temperature TNI (or alternatively, for mean-field
strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II
are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Anisotropic fluids consist of particles or molecules that can
be aligned by flow and external fields. One approach to model-
ing such fluids is to introduce a set of unit vectors fields, usually
called directors, that represent the preferred directions of the
particle orientations. If there are fluctuations in the particle ori-
entations, however, the alignment of the particles is not perfect.
In this case, the directors represent the particle orientations in an
averaged, macroscopic sense. This director approach has been
quite successful in modeling low molecular weight liquid crys-
tals where the degree of alignment is generally constant [1–4],
and in modelling ferrofluids [5–8].
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For some anisotropic fluids, such as liquid crystal polymers,
particle fluctuations play an important role in the overall proper-
ties. An alternative description that explicitly takes into account
fluctuations in particle orientations and the resulting variable
degree of alignment is a statistical one with a distribution func-
tion providing the information for the particle orientations. The
orientation distribution function satisfies an evolution equation
(for a review see, e.g., [9]). In general, however, this evolu-
tion equation can be solved only numerically. And for most
microstructural models, such as the Hess–Doi model for rigid,
rod-like liquid crystal polymers [10,11], the complete numeri-
cal solution of the orientation distribution function at present is
quite prohibitive and impractical [12] for common applications,
cf. [13] for solution methods. Approximative solutions are also
available [14–16] which allow to characterize the spatiotemporal
behavior of liquid crystals [17,18].

Alternatively to solving directly for the distribution func-
tion, one can reformulate the statistical model in terms of a
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M. Kröger et al. / J. Non-Newtonian Fluid Mech. 149 (2008) 40–55 41

hierarchy of higher tensorial moments of the alignment (the so-
called alignment tensors) and then solve the resulting evolution
equations for the alignment tensors. The alignment tensors are
useful since their principal directions are related to the macro-
scopic directors and their principal values are related to the
scalar order parameters that characterize the variable degree
of alignment. Since there is in general an infinite hierarchy
of coupled evolution equations for the alignment tensors, this
problem is also computationally difficult, so that various clo-
sure schemes have been introduced to relate higher moments
of the alignment to lower moments. The most common closure
schemes relate the fourth-order alignment tensor to the second-
order one. Such approximations simplify considerably the effort
to obtain the macroscopic alignment, and a large amount of
work has been invested in studying them. The proposed schemes
include linear [19] and quadratic closure [10,20], interpolation
between the limiting cases of weak alignment and perfect align-
ment [21], truncation of the evolution equations after a certain
order [9,10,14–16,22,23], maximum entropy method [24], time-
structure invariance criteria [25,26], and specification of an a
priori form of the orientation distribution function [27–31].

These closure schemes have been proposed often on an ad hoc
basis and are sometimes inconsistent with the exact equations
based on the orientation distribution function [12,32,33]. For
example, in the Doi and Edwards [20] model the quadratic clo-
sure gives an incorrect expression for the fourth-order alignment
tensor in the isotropic phase as well as an incorrect orientation
of the director in the uniaxial phase, while being still compat-
ible with time-structure invariance criteria [25]. Some closure
schemes also commonly lead to pathological results for cer-
tain parameter ranges [12,34]. One reason for this inconsistency
is that the various schemes yield an overdetermined system of
equations for the principal directions and principal values of
the alignment tensors. In particular, any scheme that approxi-
mates both principal values and principal directions can lead to
an overdetermined system.

The purpose of this paper is to show how this overdetermi-
nacy arises and, most importantly, how to formulate consistent
closure schemes so that it does not arise. This leads us to propose
new and simple closure schemes independent of the particular
microstructural model. Our procedure is based on the represen-
tation of the alignment tensors in terms of their principal values
and principal directions. These representations show that only
the independent principal values of the alignment tensors need
to be approximated in a closure scheme. For example, speci-
fying the principal values of the fourth-order alignment tensor
in terms of the principal values of the second-order alignment
tensor leads to a consistent second-order closure scheme. By
avoiding any assumptions on the principal directions, our proce-
dure maintains the correct symmetry and preferred orientations,
thus leading to consistent, non-pathological results. Although
our procedure is quite general, for simplicity we treat in detail
only the second to fourth-order alignment tensors.

We begin with a review of measures of alignment for
anisotropic fluids. The symmetry is conveniently divided into
three cases according to the number of distinct principal values:
isotropic, uniaxial and biaxial. We examine all three cases and

discuss consistent closure schemes for each case. In particular,
for the uniaxial case, a consistent closure scheme requires spec-
ifying only a single scalar parameter. For the biaxial case, three
scalar parameters must be specified. Furthermore, the choice of
these three relations is strongly restricted by the requirement
that the fourth-order alignment tensor be expressible in terms of
the second-order alignment tensor. We also show that a modified
quadratic closure relation can hold for all three types of sym-
metry, which is important for materials that can exhibit all three
types of symmetry, such as liquid crystal polymers in complex
flows. Our results demonstrate, however, that most commonly
used closure schemes are inconsistent and, hence, lead to incor-
rect results. An exception, although, is the scheme that postulates
an a priori form for the orientation distribution function.

As an illustration of our procedure, we apply it to the
Hess–Doi model for rigid, rod-like polymers and to ferroflu-
ids. The results can be useful for simulating complex flows such
as those arising in the injection molding of liquid crystalline
polymers into high strength parts.

2. Orientational distribution function

For uniaxial-shaped particles with symmetry axis u, the
orientational (part of a eventually space and time-dependent) dis-
tribution function f (u) with u2 = 1 can be expanded in terms of
Cartesian symmetric traceless (anisotropic, irreducible) tensors

u[n] ≡ u(l) of rank n, with u(n) ≡ uu . . . u the n-fold tensorial
product of vector u, the symbol . . . denoting the anisotropic part,
and the tensorial coefficients in front of the u[n]’s are determined
by multiplying f with u[n] and subsequent integration over the
unit sphere, to yield

f (u) = 1

4π

(
1+
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n=1

〈ζnu[n]〉�n(ζnu[n])

)

= 1

4π

∞∑
n=0

ζ2
na(n)�nu[n], (1)

where �l denotes an n-fold contraction and a[l] ≡ 〈u[l]〉 the n
th rank alignment tensor. The constant (4π)−1 ensures proper
normalization 〈1〉 = 1, and the average 〈. . .〉 is defined through
〈. . .〉 ≡ ∫ . . . f (u) d2u. The prefactor

ζn =
√

(2n+ 1)!!

n!
, (2)

with k!! = k(k − 2)(k − 4) . . . is immediately derived using the
identity [9]

1

4π

∫
u[k]u[n] d2u = n!

(2n+ 1)!!
δkn�

(n), (3)

where �(n) is the isotropic tensor [9,35]– and projector – of
rank n with the feature �(n)�na(n) = a[n] and just �(0) = 1 is
needed here to prove (2). Within the statistical approach to the
dynamics of anisotropic fluids, the distribution function obeys
a Fokker–Planck (FP) equation from which coupled equations
of moments (including anisotropic moments—the alignment
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