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Abstract

From the wealth of exact solutions for Stokes flow of simple viscous fluids [C. Pozrikidis, Introduction to Theoretical and Computational Fluid
Dynamics, Oxford University Press, Oxford, 1997, pp. 222–311], the classical “viscous–viscoelastic correspondence” between creeping flows of
viscous and linear viscoelastic materials yields exact viscoelastic creeping flow solutions. The correspondence is valid for an arbitrary prescribed
source: of force, flow, displacement or stress; local or nonlocal; steady or oscillatory. Two special Stokes singularities, extended to viscoelasticity
in this way, form the basis of modern microrheology [T.G. Mason, D.A. Weitz, Optical measurements of the linear viscoelastic moduli of complex
fluids, Phys. Rev. Lett. 74 (1995) 1250–1253]: the Stokeslet (for a stationary point source of force) and the solution for a driven sphere. We amplify
these viscoelastic creeping flow solutions with a detailed focus on experimentally measurable signatures: of elastic and viscous responses to steady
and time-periodic driving forces; and of unsteady (inertial) effects. We also assess the point force approximation for micron-size driven beads.
Finally, we illustrate the generality in source geometry by analyzing the linear response for a nonlocal, planar source of unsteady stress.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Creeping flow; Generalized Stokes–Einstein relation; Microrheology; Viscoelasticity; Correspondence

1. Introduction

Linear response theory, of thermal fluctuations and their asso-
ciated power spectra and of driven motion from an imposed
source, provides a basis for exploring viscous, elastic and
compressible properties of condensed matter. For the case
of a moving sphere, the viscous–viscoelastic correspondence
was developed in 1970 by Zwanzig and Bixon [34], moti-
vated by numerical experiments of Alder and Wainwright
[1] on atomic fluctuation spectra. Zwanzig and Bixon devel-
oped a quite general theory, allowing for linear viscoelasticity
(assuming a single mode Maxwell law), compressibility of the
surrounding medium, arbitrary degree of slip of the sphere,
and inertial (unsteady) effects. They derived the generalized
Stokes–Einstein drag law for viscoelastic fluids, and then the
velocity correlation function for thermal fluctuations. We note
an even earlier application of linear response theory was carried
out by Thomas and Walters [30] in 1965 to model a sedimenting
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sphere in a viscoelastic fluid. Their focus was on the transient
motion and passage to terminal velocity (which they showed
depends only on the zero strain rate viscosity of the fluid).
Oscillatory forcing of magnetic beads in viscoelastic materials
was carried out by Ziemann et al. [33] and then modeled with
force balance arguments and spring-dashpot mechanical mod-
els to give an alternative method for storage and loss modulus
characterization.

Mason and Weitz [19] and Mason et al. [20] had the sem-
inal idea to apply the generalized Stokes–Einstein drag law
and associated power spectra of thermally fluctuating beads
to rheology. The field of microrheology is now established
as a viscoelastic characterization technique, with many vari-
ants of the original Mason–Weitz protocol. Gittes et al. [10]
used laser-based microscopy techniques to measure trajecto-
ries of individual spheres, together with linear response theory.
Crocker et al. [8] and Levine and Lubensky [16] developed the
elastic–viscoelastic correspondence to relate two-point tracer
statistics with viscoelastic (loss and storage) moduli, in some
sense a mirror-equivalent approach to the viscous–viscoelastic
correspondence emphasized in the present paper. More recently,
Liverpool and MacKintosh [17] and Atakhorrami et al. [2] high-
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lighted inertial (unsteady but still linear) features of the flow
generated by colloidal particles, using the exact solution of lin-
ear response theory for a stationary point source of force in a
viscoelastic material.

We refer the reader to various review articles in the past
few years cf. [11,28,5,18]); the present article has a review
component as well. Our paper aims to place these results in
a unified context in which results and perspectives from vis-
cous hydrodynamics are transferred to linear viscoelasticity
with relative ease, consistent with [34,19], by a straightfor-
ward prescription—the viscous–viscoelastic correspondence.
The analogous elastic–viscoelastic correspondence is addressed
in detail by Christensen [6].

The present paper derives from the Virtual Lung Project at
UNC and specifically our collaborations with R. Superfine, D.
Hill and J. Cribb, in order to model their driven microbead
experiments for viscoelastic characterization of lung airway sur-
face liquids. The two special Stokes singularities that have been
applied in microrheology thus far, the Stokeslet and the flow
generated by a driven sphere, are analyzed here in greater detail
than in the microrheology literature. These results are necessary
to model and interpret a range of active microrheology experi-
ments, including driven magnetic beads as well as bead tracers
for propagating shear waves.

Why revisit these two examples at all? After all, Mason and
Weitz already applied the results for a single localized source or
a spherical source in their seminal papers [19,20], and Levine
and Lubensky [16] and Crocker et al. [8] already analyzed and
applied special features of the displacement of one bead due to
the thermal motion of another bead, in their analysis of two-point
passive microrheology. The two-point focus is in the special
regime where the beads are separated by several bead diameters,
where bead-fluid interactions are suppressed. In our colleagues’
experiments, the beads do not all satisfy this criterion, and it
is of interest to know the response function in the immediate
neighborhood of a driven bead. The microscope takes data in a
focal plane, so it is also relevant to know whether or on what
timescale beads will stray out of the focal plane for a given
experiment. The standard model for driven magnetic beads [33]
relies on a force balance argument with an ad hoc geometric
factor, and analogies with the Voigt mechanical model are often
used to interpret creep-recovery data. More recent models [32]
have incorporated polymer network deformations in the imme-
diate neighborhood of the driven bead. It is clearly of interest
to derive an explicit expression for a bead driven by a magnetic
field in an arbitrary linear viscoelastic material, which yields
the bead motion in time as well as the displacement and stress
fields in the neighborhood of the bead. This information follows
from our analysis of a forced sphere. In shear wave experiments
with embedded bead tracers [21], normal stress generation is
capable of generating bead motion along the direction of wave
propagation. Can one quantify this effect?

For these and related applications, we analyze the viscoelas-
tic creeping flow induced by a time-varying point source and a
driven sphere to contrast responses from near-field to far-field,
and in different focal planes. Can we distinguish quasi-steady
versus unsteady (inertial) effects in the field surrounding a har-

monically driven sphere, and if so, where? An investigation into
this question is approximated with the viscoelastic analog of a
Stokeslet for an imposed time-varying point force by Liverpool
and MacKintosh [17] and Atakhorrami et al. [2]. Here, we ana-
lyze inertia-induced vortices in both viscous and viscoelastic
fluids, and in particular, we show where vortices are spawned in
bead diameter dimensions and analyze the vortex strength rela-
tive to the applied force, for time-varying point forces and driven
spheres. In each illustration, our goal is to inform experimental
protocols as to whether and where signatures of elastic versus
viscous properties are most accessible.

To formulate the viscous–viscoelastic correspondence, the
first step is to cast linear response theory in parallel with the clas-
sical hydrodynamic analyses of viscous creeping (Stokes) flow
[12,24]. Because of linearity, generalizations to richer sources
relevant for modern experiments are immediate, e.g., point or
spherical sources with oscillating strength; we provide these
results, which are straightforward, but which have not previously
appeared in this detail in the literature. Again, our emphasis is
on illuminating experimentally measurable features. The more
challenging analysis of initial-value problems, as in Thomas and
Walters [30], has not been introduced into microrheology thus
far, and we do not take up the challenge here.

In the viscoelastic formulation of linear response theory, the
viscosity of simple viscous liquids is replaced by the com-
plex viscoelastic modulus of linear viscoelastic materials, after
the equations have been transformed from the time domain
to frequency space. This identification is possible because
linear viscoelasticity presumes a convolution integral for the
stress tensor, whose Fourier transform yields the Stokes relation
with a complex (frequency-dependent) viscosity. The creep-
ing flow equations (steady or unsteady) can then be posed
consistent with point, finite or extended sources, of force, veloc-
ity, strain or stress, and the correspondence remains intact for
the associated geometry and boundary-initial value problems.
Whenever the creeping viscous flow problem can be solved,
the analogous solution of the viscoelastic flow problem fol-
lows.

Thus far, the field of microrheology has exploited two such
creeping viscoelastic flow solutions, for a stationary point source
of force and a driven sphere. In fact, only partial features of
these solutions are typically used; we illustrate additional infor-
mation of experimental relevance in the analysis and figures
below. These are two from a large family of special solutions
arising from “Stokes singularity theory” of viscous fluids [24].
By varying the geometry of the problem and the source (local
or nonlocal, steady or unsteady, of force, stress, displacement or
velocity), the essential calculation is that of a Green’s function,
called in this context a viscous Stokes singularity. We present
illustrations for point, spherical, and planar sources.

All Stokes singularities (and appropriate sums of them) carry
over to viscoelastic media via this simple prescription. The
inferences that can be drawn from each creeping flow solu-
tion require some analysis and work. Detailed relationships
between force, displacement, stress and flow fields are avail-
able, which can then be applied to experimental data, or even to
design experiments. First, we provide a straightforward exten-
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