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Abstract

We implement a volume-of-fluid algorithm with a parabolic re-construction of the interface for the calculation of the surface tension force
(VOF-PROST). This achieves higher accuracy for drop deformation simulations in comparison with existing VOF methods based on a piecewise
linear interface re-construction. The algorithm is formulated for the Giesekus constitutive law. The evolution of a drop suspended in a second liquid
and undergoing simple shear is simulated. Numerical results are first checked against two cases in the literature: the small deformation theory for
second-order liquids, and an Oldroyd-B extensional flow simulation. We then address the experimental data of Guido et al. (2003) for a Newtonian
drop in a viscoelastic matrix liquid. The data deviate from existing theories as the capillary number increases, and reasons for this are explored
here with the Oldroyd-B and Giesekus models.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental photographs of a drop of viscous liquid sheared
in another in Stokes flow are given in [1–7]. The study of a sin-
gle drop applies to dilute shear-mixing for which coalescence is
negligible [8–13]. The volumes of daughter droplets depend on
physical properties and conditions of shear, and affect the rheo-
logical properties of the mixture [14–18]. In particular, the gross
features of drop size distributions for the case of equal viscosity
for Stokes flow have been simulated numerically with a VOF
continuous-surface-force (CSF) algorithm [19]. In the context
of drop breakup simulations, however, CSF leads to spurious
currents and errors, which do not disappear with mesh refine-
ment. Smoothing on a scale large relative to the mesh helps, but
is unrealistic in 3D simulations. Smoothing is not needed for
the more accurate calculation of interface curvature described
in Section 3, the ‘parabolic reconstruction of the interface for
the calculation of the surface tension force’ (PROST) [20].

In this paper, we focus on the development of a viscoelastic
liquid–liquid PROST code. A number of experiments have been
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conducted on the effect of elasticity on the deformation of a drop
in a matrix fluid [6,21–23]. They have shown that elasticity af-
fects the amount of drop deformation as well as the angle, which
the drop makes with the flow direction. Results reported on ex-
periments in the literature vary in their conclusions. In [21,24],
it is reported that viscoelasticity has a major effect on drop elon-
gation, with drop elasticity suppressing deformation and matrix
elasticity enhancing it. Numerical computations in [25] show
similar trends. On the other hand, recent work by Guido’s group
[6,26,27] shows that, at low capillary and Weissenberg numbers,
drop extension is virtually unchanged by elasticity, in agreement
with second order fluid theory, and the main effect of matrix
elasticity is to rotate the drop into the flow direction. Outside the
range where second order theory is valid, the experiments actu-
ally show a decrease in drop deformation when the matrix fluid
is elastic. Recent simulations by Yue et al. [28] also show such
a decrease at moderate Weissenberg number, while an increase
is found at higher Weissenberg number.

We mention in passing that some experiments have also
shown new modes of breakup driven by normal stresses, which
have no analog in the Newtonian case [29–32]. In these cases,
the drop is elastic, and it stretches in the spanwise direction, like
a sausage being rolled. This process evolves much more slowly
than “ordinary” breakup and seems to be beyond the reach of
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numerical simulations at this point. This effect should not be
confused with the minor drop widening in the spanwise direc-
tion that is observed in some Newtonian flows [33].

Our computations will focus on the range of parameters cov-
ered in the Guido experiments [26]. The results show trends
qualitatively consistent with the experiments.

2. Governing equations

We consider shearing flow of a drop surrounded by a matrix
fluid. Both liquids are modeled by the Giesekus model. The two
liquids may differ in density ρ, solvent viscosity ηs, polymeric
viscosity ηp, and relaxation time λ. The total viscosity is denoted
η = ηs + ηp, and the elastic modulus at time 0 is denoted G(0) =
ηp/λ.

The governing equations for the VOF approach are:

∇ · u = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · T − ∇p

+∇ · (ηs(∇u + (∇u)T )) + F, (1)

where T is the extra stress tensor.
The total stress tensor is τ = −pI + T + ηs[∇u + (∇u)T ].

The body force is equal to the interfacial tension force:

F = σκ̃nδs, (2)

where σ denotes the surface tension coefficient, n the normal
to the interface, δs the δ-function at the interface, and κ̃ the
curvature −∇ · n. [34].

The constitutive equation for the Giesekus model is:

λ

(
∂T
∂t

+ (u · ∇)T − (∇u)T − T(∇u)T
)

+ T + λκT2

= λG(0)(∇u + (∇u)T ). (3)

The interface is represented as the surface where a color func-
tion:

C(x, t) =
{

0 in the matrix liquid

1 in the drop
(4)

jumps in value. C is advected by the flowfield. In F, n =
∇C/|∇C|, δs = |∇C|. The numerical implementation of the sur-
face tension force will be described later.

2.1. Boundary conditions

The drop is initially spherical with radius a. The walls are
located at z = 0, Lz, and move horizontally with speeds ±U0.
The boundary conditions at the upper and lower walls impose a
shear rate of:

γ̇ = U ′(z) = 2U0

Lz

(5)

in the matrix liquid. Spatial periodicity is imposed in the x and
y directions. Additional boundary conditions are not needed
for the extra stress components. The computational domain

0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz is chosen so that we min-
imize the effect neighboring drops and that of the walls. Typ-
ically, the distance between the walls is eight times the drop
diameter, the spanwise period is four times the drop diameter,
and the period in the flow direction is chosen dependent on drop
extension. We have found, in these and prior (Newtonian) sim-
ulations, that the influence of the boundaries is negligible under
these circumstances.

2.2. Initial conditions

The initial flow field is simple shear for both the drop and
the matrix fluids. This is (U(z), 0), satisfying U(z) = U0(2z −
Lz)/Lz. The stresses are set equal to the values which would
prevail in the corresponding steady shear flow with the given
shear rate.

This initial condition, used in most of the computations be-
low, corresponds to a drop being placed into a pre-existing shear
flow. Alternatively, we can consider a shear flow started up with
the drop in place; the difference is that the viscoelastic stresses
are initially zero. We shall see some differences between the two
cases, as discussed in Section 4.1 below. Even in these compar-
isons, we took the initial velocity field to be linear and did not
consider any transient propagation of shear waves starting from
the walls.

2.3. Parameters

The dimensionless parameters are the viscosity ratio (based
on total viscosities) m = ηdrop/ηmatrix, a capillary number Ca =
aγ̇ηmatrix/σ which measures the competition between the vis-
cous force causing deformation versus capillary force keep-
ing the drop together, a Reynolds number Re = ργ̇a2/ηmatrix,
a Weissenberg number We = γ̇λ and retardation parameter
β = ηs/η.

3. Viscoelastic PROST algorithm

A rectangular Cartesian staggered mesh is used. Fig. 1 shows
a typical staggered grid cell on which the unknowns are evalu-
ated at different locations as indicated. The u-velocity is centered
at the back face, the v-velocity at the left side face, and the w-
velocity is centered at the bottom face of the cell. The pressure
pi,j,k and the color function C(i, j, k) are located at the center.
The diagonal components of the extra stress tensor take values
at the center of the cell, while each off-diagonal component is
at the mid-point of an edge.

There are two primary features to the solution method: the cal-
culation of the interfacial tension force and the time-integration
of the governing equations.

3.1. Calculation of the interfacial tension force

The body force for a grid cell cut by the interface includes
the interfacial tension force. When such an interface cell shown
in Fig. 2 is encountered in PROST (parabolic reconstruction of
the surface tension force), a quadratic surface is fitted through
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