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Interfacial instability between sheared elastic liquids in a channel
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Abstract

We consider the linear stability of the interface between two sheared elastic liquids at large Weissenberg number (Wi) with negligible inertia. The
liquids are of Oldroyd-B or UCM type and have matched viscosity. In UCM liquids, Renardy [Y. Renardy, Stability of the interface in two-layer
Couette flow of upper convected Maxwell liquids, J. Non-Newton. Fluid Mech. 28 (1988) 99–115] found a purely elastic instability for short-waves
in the absence of surface tension for which the perturbation flow decays exponentially away from the interface. For UCM liquids at large Wi we
show that this instability persists even though the wavelength is larger than the channel width and the disturbance occupies the entire channel.
Surprisingly, the growth rate is not affected by the location of the walls, even though the mode structure is altered. This analysis suggests a
reappraisal of the appropriateness of the short-wave and long-wave classifications for instabilities of viscoelastic liquids in order to accommodate
the additional length scale introduced by fluid velocity and relaxation. The instability persists for Oldroyd-B liquids even as the elastic contribution
to viscosity approaches zero. Surprisingly too, the inclusion of surface tension does not affect the asymptotic growth rate at large wavenumber.
When more modest values of Wi are considered, we find parameter values for which arbitrarily large surface tension reduces the growth rate but
does not stabilize the flow; previously proposed mechanisms based on the interface displacement are therefore inadequate to explain the instability.
Because the instability is locally generated, it appears in other high Wi flows with interfaces, both in channels and in pipes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Viscoelastic flows are important in a number of industrial
applications and their instabilities have received considerable
attention. The elasticity provides a source of energy for insta-
bilities even in the absence of inertia, creating a class of purely
elastic instabilities. Reviews of purely elastic instabilities can
be found in [2,3]. In this paper, we study the stability to distur-
bances with wavenumber k of two inertialess Upper Convected
Maxwell (UCM) or Oldroyd-B liquids. The liquids undergo
shear in a channel of width L with characteristic velocity U0;
their viscosities are matched, but their relaxation times differ.

Much of the theoretical investigation of inertialess interfa-
cial instabilities in viscoelastic liquids began with Chen [4] in
the long-wave (wavelength long compared to channel width:
L � k−1) limit and with Chen & Joseph and Renardy [1,5] in
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the short-wave (wavelength short compared to channel width:
k−1 � L) limit. The physical mechanism behind the long-wave
instability was provided by Hinch et al. [6]. Related theoretical
work in both limits was done by Ganpule and Khomami [7–9].
The results were generalized for other liquids by Wilson [10]
and Wilson and Rallison [11–13].

Inertialess Couette flow of two Newtonian liquids with
matched viscosity is linearly stable, as is the inertialess Couette
flow of a single Oldroyd-B liquid [14,15]. A nonlinear stability
proof for UCM liquids in Poiseuille flow is claimed by [16] who
showed that the flow minimized an energy functional, but recent
work [17,18] shows that no reasonable energy functional will
decay monotonically in time for Oldroyd-B or UCM liquids.
This is further confirmed by some numerical simulations [19]
which find a finite amplitude nonlinear instability of Poiseuille
and Couette channel flow for Oldroyd-B liquids when the elas-
tic component of viscosity is large compared to the Newtonian
component of viscosity.

Because the Couette flow of a single inertialess Oldroyd-B
liquid is linearly stable, the short and long-wave interfacial insta-
bilities must be attributed to the jump in elastic properties at the
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interface. The wavespeed of the long-wave mode relative to the
interface is found to be much less than the velocity scale defined
by the wavelength and the growth rate, that is, at leading order
the wave remains stationary relative to the interface. This reflects
the fact that the instability can be explained in terms of the nor-
mal stress jump which is independent of the sign of the shear rate
[6]. In contrast, the short-wave mode travels with a relative speed
comparable to the velocity scale defined by its growth rate and
wavelength. The physical mechanism must involve some effect
which depends on the sign of the shear rate. Some mechanisms
have been suggested for this instability that depend on inter-
face displacement [9,20]. We show, however, that at sufficiently
large Weissenberg number this instability exists even if the inter-
face is held flat by surface tension, so a different explanation is
needed.

Renardy [1] considered interfacial instabilities of inertialess
Couette flow of UCM liquids for short-waves: k−1 � L. She
found that the perturbed flow is localized in a boundary layer
of thickness 1/k near the interface. Consequently short-wave
instabilities exist provided the walls are sufficiently far from the
interface. In the large Weissenberg number limit, she found that
the growth rate is a function only of the ratio of the two relaxation
times. For some ratios the flow is stable. In contrast, at low
Weissenberg number, all pairs of relaxation times are unstable.
The two limits involve different mechanisms. This paper focuses
on the large Weissenberg number limit.

Chen and Joseph [5] examined inertialess core-annular flow
of UCM liquids through a pipe without surface tension. They
found the same short-wave behavior as Renardy because the
curvature of the pipe disappears from the asymptotic equations.
With surface tension they claim that the flow stabilizes at large
enough k. Our results disagree with this conclusion.

Wilson and Rallison [11] generalized the UCM results to
Oldroyd-B liquids, again with k−1 � L. They found that the
addition of a Newtonian component to the viscosity has a desta-
bilizing effect. In the limit where the Newtonian viscosity is large
compared to the elastic stress, they found instability whenever
the relaxation times of the two liquids are different. In the pres-
ence of surface tension at large enough k they showed that the
normal force due to surface tension dominates the elastic normal
force which suggests that the interface and hence the flow should
be stabilized. However, we show that at large Wi the normal force
balance is irrelevant to the stability.

We consider Couette flow through a channel of width L with
walls moving at a relative velocity of U0. In characterizing the
different classes of interfacial instability it is important to rec-
ognize that for viscoelastic liquids in Couette flow three length
scales enter the problem: the channel width L, the wavelength
of the disturbance k−1, and the relative distance U0τ travelled
by the walls in a relaxation time τ. This final length scale is a
measure of the distance a typical particle travels during a relax-
ation time. Other length scales can be constructed from these
three. For example liquid particles initially separated by the dis-
tance 2πL/U0τk in the cross-stream (y) direction are separated
by a wavelength in the streamwise (x) direction after a relaxation
time. We find later that the length scale L/U0τk determines the
thickness of boundary layers in the flow.

The previous analyses considered k−1 � L (short-waves) or
k−1 � L (long-waves) and implicitly assumed that k−1 � U0τ

for short-waves or k−1 � U0τ for long-waves. This leaves two
other limits unexplored: L � k−1 � U0τ and U0τ � k−1 �
L. In the latter case the Weissenberg number Wi = U0τ/L is
small and the elastic effects are weak; the analysis of [1,5] for
k−1 � U0τ � L applies to this case. This paper focuses on
the unexplored former case for which Wi � 1. In this regime
the wavelength is long compared to the channel width, but
short compared to the relaxation length scale. This leads to a
mixture of short and long-wave properties, allowing us to use
standard short-wave techniques, but also to make standard long-
wave assumptions (e.g., the pressure gradient varies only in the
x-direction).

The organization of this paper is as follows: In Section 2 we
describe the governing equations and the unperturbed Couette
flow. In Section 3 we study the large Wi limit of the UCM liquid
analytically and numerically, and in Section 4 we study the large
Wi limit of the Oldroyd-B liquid numerically. We then discuss
the effect of surface tension, showing in Section 5 that even for
moderate Wi some flows are not stabilized by arbitrarily large
surface tension. In Section 6 we discuss the physical scalings
of the instability. An additional instability is briefly analyzed in
Section 7. In Section 8 we show that the main instability of this
paper is robust in that it persists for other flow profiles under
some mild assumptions. Finally, in Section 9 we offer some
concluding remarks.

2. Governing equations

Consider two incompressible Oldroyd-B liquids in steady
Couette flow in a channel of width L as shown in Fig. 1. We
choose the origin in y to be the location of the unperturbed inter-
face. The frame of reference is chosen to travel with the interface
velocity. The lower liquid occupies a fraction Δ of the channel;
the walls at y = (1 −Δ)L and y = −ΔL move horizontally
with velocity (1 −Δ)U0 and −ΔU0 respectively.

The liquids have different relaxation times τ− and τ+ but
the same, constant, shear viscosity μ, as well as the same rela-
tive contributions of elastic and Newtonian components to that
viscosity. Without loss of generality we take τ− ≥ τ+. In the
absence of inertia we have

∇ ·� = 0, (1)

Fig. 1. Two elastic liquids in Couette flow U = U0y/L through a channel. The
liquids differ only in relaxation time τ.
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