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Bread dough rheology and recoil
2. Recoil and relaxation
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Abstract

It is shown that a simple Lodge model with a power-law memory function and a damage function which is a function of strain can describe the
behaviour of a bread dough in steady shear, steady elongation, small and medium size sinusoidal strains, and shear stress relaxation. The number
of parameters needed to be found from experiment is minimal, which is a clear advantage. Some questions remain about the frequency dependence
in the sinusoidal oscillatory test. We also use the model to describe the difficult, but practically important problem of recoil after steady elongation.
By a simple modification of the damage function concept for the recoil phase, we are able to describe the results of experiments at elongation
rates between 0.001 and 0.1 s−1 and Hencky strains up to 2.5. Finally, although no explicit yield stress has been introduced into the model, results
resemble those from models with a yield stress that depends on the rate of elongation.
© 2007 Elsevier B.V. All rights reserved.
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1. Modelling of bread dough

The present paper continues the exploration begun in Part
1 [1] of the use of a modified Lodge elastic fluid model with
a damage function to describe the mechanics and rheology of
bread dough. In Part 1 [1] we showed that the rheology of this
soft, starch-filled solid could be described in suddenly started
steady shear and elongation by a constitutive equation of the
Lodge [2] form:

σ + PI = f

∫ t

−∞
m(t − t′)C−1(t′) dt′ (1)

where �(t) is the stress at time t, P the pressure, I the unit tensor
and C−1(t′) is the Finger strain tensor [2,5] at time t′ computed
relative to the configuration at the present time t. The memory
function is assumed to be of the power-law form:

m(t) = pG(1)t−(1+p) (2)

where the constants p and G(1) can be found from small-strain
oscillatory testing [1]. (Note that the constant G(1) here signi-
fies the numerical value of the stress relaxation modulus G(t) at
t = 1 s—the constant does not have the dimensions of stress.) The
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“damage function” f is assumed to be a function of the Hencky
strain at time t, computed relative to the state of rest, which is
assumed to occur for times less than zero.

For the JANZ dough used for the tests, we have already [1]
reported on preparation methods, sinusoidal small-strain, shear
and elongation beginning from rest, and on sinusoidal strain
tests of moderate magnitude (∼10% strain). Here we present,
for the same dough, relaxation after a shear strain applied at
t = 0, and recoil in elongation from various initial strains. These
experiments form, we believe, a unique set for a single dough,
and we attempt to use Eqs. (1) and (2) to describe all the data.
Two characteristics of the model are the economy of parameters,
and the rapid decrease of the damage function f from unity at
very small strains (∼0.001 or smaller) to a value of order 0.1
at strains of only 10–20% [1]. This remarkable softening with
work input (kneading) is of course a well-known and valuable
aspect of dough rheology. We begin by studying relaxation from
a known shear strain, then consider the larger-strain oscillatory
behaviour reported in Part 1 [1], and finally discuss recoil after
elongational stress and release.

2. Stress relaxation

Ideally, in this test a suddenly applied (step) of shear strain
(γ0) is applied at t = 0, and the decay of shear stress is measured.
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Fig. 1. The shear strain–time curves achieved for various sized “steps” of shear.
The maximum shear is used to normalize the curves. The ideal test would apply
a true step at t = 0. The sizes of the steady-state shear steps (0.0001–0.3) are
noted in the figure.

In shear, Eqs. (1) and (2) can be written in the form:

τ = f

∫ t

−∞
G(1)(t − t′)−p

γ̇(t′) dt′ (3)

and the result for a step of shear of size (γ0) is

τ = γ0f (γ0)G(1)t−p (4)

In experiments a true step of shear is not available, and Fig. 1
shows that around 1–2 s is needed to reach the final strain γ0 in
the Paar Physica MCR 300 instrument. There is also a variation
of strain (and stress) with radius in the parallel plate apparatus,
so here γ0 and τ are actually taken as the strain and stress at 75%
of the plate radius. It is known that this approximation is usually
very little (O(1%)) in error [3]. If we idealize the response of
Fig. 1 as a constant ramp γ̇ = γ0/t0, where t0 is the time to reach
steady state and γ = γ0 for t > t0, we find the response at t (>t0)
to be

τ = γ0f (γ0)G(1)

t0(1 − p)
[t1−p − (t − t0)1−p] (5)

and for t � t0 we find:

τ = γ0f (γ0)G(1)t−p

[
1 + p

2

( t0

t

)
+ O

( t0

t

)2
]

(6)

Since in our case p = 0.27, the result (6) is within 1% of (4) for
t/t0 ≥ 10.

In fact the power-law asymptote will always be reached
for large enough times. The present set of experiments shows
behaviour close to the power-law relaxation at quite early times
(Fig. 2), and in this figure we have fitted the curves shown
of slope −0.27 to the stress data at t = 10 s. This enables us
to find f(γ0), since we assume G(1) = 12.2 kPa s0.27, from the
step strain of 0.01% (top curve in Fig. 2). (Previously we found
G(1) ∼ 10.7 kPa s0.27 from oscillation; so there is reasonable
concordance in these values.) Recalling that the Hencky strain
εH ∼ (1/2)γ for small strains [4], we can plot f(εH) from our

Fig. 2. Stress relaxation modulus after initial shear deformation. The final strain
(γ0) is only reached after t � 1 s The decay curves are fairly well described by
power-law curves of the form f(γ0)G(1)t−p for t � 1 s. The ordinate is τ/γ0, the
apparent shear relaxation function. The fitted lines all have the same slope t−0.27.

relaxation tests (circles in Fig. 3). From Fig. 7 of Part 1 [1] we
find the points shown as inverted triangles (steady shear) and
squares (steady elongation).

It is noticeable that for very long times (≥100 s) there is some
softening present that is not predicted by the model. Looking at
the small-strain oscillation results of Part 1 (Fig. 2) we see that
these tests also show some deviation from a strict power-law at
very low frequencies (<0.1 rad/s), and since measurements were
not made below 0.06 rad/s, there may be effects at these low
frequencies and long times which are not modelled correctly.
However, for many process applications these long times/low
frequencies will often be unimportant.We can also interpret these
results using a KBKZ model. From well-known results [5] if the
strain–time separation of the KBKZ kernel is assumed, then the

Fig. 3. Damage function f as a function of the Hencky strain εH for stress relax-
ation measurements (©), finite-amplitude strain oscillations at 1 Hz (♦) and the
average of 0.01, 1 and 30 Hz measurements (
), steady shearing (�) and steady
elongation results (�) from Part 1 [1] are also shown. For small εH (<0.05) the
full line shows f = −(0.135 + 0.123 ln εH); for larger εH values, the values for
shear and elongation are shown in Fig. 7, Part 1 [1]; the formula for f in this
range is given in Appendix A (Eq. (A4)).
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