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Abstract

Kinetic theory models involving the Fokker–Planck equation can be accurately discretized using a mesh support (finite elements, finite differences,
finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element
framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of
freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization
techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows
circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation
of variables.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many natural and synthetic fluids are viscoelastic materials, in the sense that the stress endured by a macroscopic fluid element
depends upon the history of the deformation experienced by that element. Notable examples include polymer solutions and melts,
liquid crystalline polymers and fibre suspensions. Rheologists thus face a challenging non-linear coupling between flow-induced
evolution of molecular configurations, macroscopic rheological response, flow parameters (such as the geometry and boundary
conditions) and final properties. Theoretical modeling and methods of computational rheology have an important role to play in
elucidating this coupling.

Atomistic modeling is the most detailed level of description that can be applied today in rheological studies, using techniques of
non-equilibrium molecular dynamics. Such calculations require enormous computer resources, and they are currently limited to flow
geometries of molecular dimensions. Consideration of macroscopic flows found in processing applications calls for less detailed
mesoscopic models, such as those of kinetic theory.

Models of kinetic theory provide a coarse-grained description of molecular configurations wherein atomistic processes are
ignored. They are meant to display in a more or less accurate fashion the important features that govern the flow-induced evolution
of configurations. Over the last few years, different models related to dilute polymers have been evaluated in simple flows by means
of stochastic simulation [9] or Brownian dynamics methods.
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In this context, micro–macro methods of computational rheology that couple the coarse-grained molecular scale of kinetic theory
to the macroscopic scale of continuum mechanics have an important role to play (for a review, see [10]). This approach is much more
demanding in computer resources than more conventional continuum simulations that integrate a constitutive equation to evaluate
the viscoelastic contribution of the stress tensor. On the other hand micro–macro techniques allow the direct use of kinetic theory
models and thus avoid the introduction of closure approximations.

Since the early 1990s the field has developed considerably following the introduction of the CONNFFESSIT method by Ottinger
and Laso [14]. Being relatively new, micro–macro techniques have been implemented only for models of kinetic theory with few
configurational degrees of freedom, such as non-linear dumbbell models of dilute polymer solutions and single-segment tube models
of linear entangled polymers.

Kinetic theory provides two basic building blocks: the diffusion or Fokker–Planck equation that governs the evolution of the
distribution function (giving the probability distribution of configurations) and an expression relating the viscoelastic stress to the
distribution function. The Fokker–Planck equation has the general form
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where D/Dt is the material derivative, vector X defines the coarse-grained configuration and has dimensions N. Factor A is a
N-dimensional vector that defines the drift or deterministic component of the molecular model. Finally D is a symmetric, positive
definite N ×N matrix that embodies the diffusive or stochastic component of molecular model. In general both A and D (and
in consequence the distribution function ψ) depend on the physical coordinates x, on the configuration coordinates X and on the
time t.

The second building block of a kinetic theory model is an expression relating the distribution function and the stress. It takes the
form
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where C represents the configuration space and g is a model-dependent tensorial function of configuration. In a complex flow, the
velocity field is a priori unknown and stress fields are coupled through the conservation laws. In the isothermal and incompressible
case the conservation of mass and momentum balance are then expressed (neglecting the body forces){

Div v = 0
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where ρ is the fluid density, p the pressure and ηsd a purely viscous component (d being the strain rate tensor). The set of coupled
Eqs. (1)–(3), supplemented with suitable initial and boundary conditions in both physical and configuration spaces, is the generic
multiscale formulation.

Kinetic theory models involving the Fokker–Planck equation, can be accurately discretized using a mesh support (finite elements,
finite differences, finite volumes, spectral techniques, etc.). However these techniques involve a high number of approximation
functions. In the finite element framework, widely used in complex flow simulations, each approximation function (also known as
shape function) is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces
(including physical and conformation spaces and time) standard discretization techniques fail due to an excessive computation time
required to perform accurate numerical simulations.

To alleviate the computational effort some reduction strategies have been proposed, as is the case of the partial solution of the
cyclic reduction (PSCR) [11,16] which solves linear systems by using techniques of separation of variables, partial solution and
projection techniques [1,12,17] and [19]. Despite the significant reduction of the computational effort this technique can only be
applied for solving particular partial differential equations and it fails also in the multidimensional case.

Another appealing strategy that allows alleviating the computational effort is based on the use of reduced approximation bases
within an adaptive procedure. The new approximation functions are defined in the whole domain and they contain the most repre-
sentative information of the problem solution. Thus, the number of degrees of freedom involved in the solution of the Fokker–Planck
equation is drastically reduced. The construction of those new approximation functions is done with an ‘a priori’ approach, which
combines a basis reduction (using the Karhunen–Loève decomposition) with a basis enrichment based on the use of some Krylov’s
subspaces. This strategy has been successfully applied, in some of our former works, to solve kinetic theory models defined on the
surface of the unit sphere (for simulating short fibers suspensions) as well as 3D models describing some molecular models [3,15].
The main conclusion of our former works was the fact that an accurate description of a complex system evolution can, in general, be
performed from the linear combination of a reduced number of space functions (defined in the whole space domain), the coefficients
of that linear combination evolving in time. Thus, during the solution of the evolution problem the coefficients of the approximation
are computed at the same time that the numerical algorithm constructs the reduced approximation basis. An important drawback of
one such approach is the fact that the approximation functions are defined in the space domain, and until now, the simplest form
to represent one such function is given its value in some points of the domain of interest, being its value defined in any other point
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