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Abstract

We study the behaviour of a single integral constitutive equation, capable of providing analytic expressions for the viscoelastic stress in extensional
flows of a variety of deformation histories and geometries, ranging from uniaxial to equibiaxial. It is based on the use of a stress damping function,
with a power-law dependence on the elongation, λ: h(λ) = 1/λn. The parameter n (0 ≤ n ≤ 2) signifies the nonlinear viscoelastic character of the
material and, therefore, is an inverse measure of network connectivity strength of the underlying microstructure. This renders the constitutive
approach applicable to incompressible polymers of a variable degree of branching, strain hardening and stress thinning behavior. Methods of
connecting n with the macromolecular architecture and the alignment strength of the flow are also explored.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Elongational flow dominates polymer processing technolo-
gies such as melt spinning, blow molding, sheet stretching, tube
inflation, vacuum molding, extrusion coating and foaming [1].
This explains its attraction as a topic of theoretical and experi-
mental study to engineering and materials scientists alike [2–37].
Essential for the success of the above applications is choosing
materials with substantial elongational viscosity, that demon-
strate strain hardening (SH, i.e., accelerated viscosity growth
beyond a characteristic strain) and melt strength (MS), defined as
the maximum force at which a molten thread can be drawn under
standard conditions before it breaks. Imparting such properties
on the polymer is most effectively accomplished by broaden-
ing the molecular weight distribution and/or adding long chain
branches; either molecular change is manifested with an increase
in the steady-state compliance, J0

e [38].
Constitutive equations encode information pertaining to the

rheology of a material in a manner useful for process design and
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characterization. In the last 30 years, constitutive equations of
the single integral K-BKZ type [39–41], with separable the time
and strain contributions became popular on the basis of their
simplicity, practicality and reasonable success in representing
reality:

σ =
∫ t

−∞
M(t − t′)h(I1, I2)C−1(t, t′)dt′ (1)

Here, σ is the stress tensor, M(t) the memory function, C−1 the
Finger strain tensor, h(I1,I2) is the damping function, a measure
of the viscoelastic nonlinearity of the material due to its fad-
ing memory at large deformations and, therefore, a decreasing
function of the first (I1) and second (I2) invariants of C−1. Eq.
(1) was introduced by Wagner [42] on the grounds that, follow-
ing step–strain excitations of variable magnitude, time–strain
superposition was commonly observed in the stress relaxation
response of branched and linear polymers [43,44].

For the case of linear chains, Eq. (1) soon found its molecu-
lar justification in the context of the theory of Doi and Edwards
[45]. The damping function, h, represents the extent of destruc-
tion of the temporary polymer network due to loss of chain
entanglement density and segmental orientation following a
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deformation. The strain invariants constitute the objective vari-
ables of h because they quantify the average extent of chain
retraction after a sudden elongation, which is the main reason of
entanglement dissolution and loss of segment orientation. This
is because (I1 − 3)1/2 physically signifies the average change in
length of a line element at point P in the material, averaged over
all possible orientations: (I1 − 3)1/2 = dL′/dL [37]. By analogy
(I2 − 3)1/2 signifies the average area change on all planes around
point P: (I2 − 3)1/2 = dA′/dA. For monodisperse polymer chains
of uncomplicated linear architecture, the Doi-Edwards molecu-
lar theory suggests that h is only due to the survival of polymer
segment orientation. Then, h is a nearly universal function of I1
(mainly) and I2; in the Larson approximation, h ≈ 5/(I1 + 2) [40].

Material invariance of the damping function fails in the pres-
ence of broad polymer molecular weight distribution (MWD)
and, most notably, in the presence of chain branching [24,43,46].
This is primarily due to the fact that stress survival after a sud-
den strain is now not only due to segmental orientation but also
due to some remaining segmental deformation [47]. Therefore,
the type and degree of branching as well as the branch length
and relative location within the molecule (internal vs. external,
i.e., crosslinked on both ends vs. tethered) improve the connec-
tivity of the temporary polymer network, reduce entanglement
destructibility upon deformation and, therefore, smooth the non-
linear viscoelastic character of the fluid.

Several phenomenological models handle these h variations
empirically, thus adding flexibility to the predictive capacity of
integral equations. Most notably Wagner et al. suggest [48,49]:

h ≈ exp(−a′√b′(I1 − 3) + (1 − b′)(I2 − 3)) (2)

while Papanastasiou et al. [50]:

h ≈ 1

1 + a′′(I1 − 3) + b′′(I2 − 3)
(3)

which along with improvements [51] are the most frequently
used in fluid mechanical calculations [22,52]. Considerable
advances have also been made over the years in molecular the-
ory inspired modeling, albeit, at the cost of added complexity
[53–60,28].

For extensional flows in particular, and with engineering
practitioners in mind that relish simplicity in the constitutive
approach, closed form solutions, a minimum number of material
parameters, and connection of these parameters to microstruc-
ture, we have recently introduced [62] the simplest possible form
of h(λ), the power-law damping function, applicable for a range
of degrees of chain branching and, therefore, strain hardening
and stress thinning responses:

h(λ) = 1

λn
(4)

Eq. (4), when combined with the integral constitutive Eq. (1)
and an exponentially decaying M(t) may be solved analytically.

Justifying its use based on evidence, studying its stress predic-
tions under a variety of flow histories and geometries, and further
comparison of these predictions with experience are the scope
of this paper. Discussion concerning the physical significance
of the material parameters involved emphasizes its application
on polymer fluids; nevertheless, we see no reason preventing its
use as an approximate model for viscoelastic elastomers, glasses,
rocks or metals, provided that one considers isotropic structure
and incompressibility.

2. Strain measures in extensional flow [40,41]

Let D be the rate of strain tensor which is defined as the sym-
metric part of the velocity gradient tensor. For an incompressible
fluid in a general extensional flow defined by the velocity field
Ui = eiXi, where i = 1, 2, 3, and e1 + e2 + e3 = 0:

D =

⎡
⎢⎣

e1 0 0

0 e2 0

0 0 e3

⎤
⎥⎦ =

⎡
⎢⎣

ε̇ 0 0

0 mε̇ 0

0 0 −(m + 1)ε̇

⎤
⎥⎦ (5)

Here, e1 ≥ e2 ≥ e3 and −0.5 ≤ m ≤ 1. For uniaxial (i.e. axisym-
metric) extension, for example, m = −0.5, for planar extension
(pure shear) m = 0, for ellipsoidal extension m = 0.5, and for biax-
ial compression m = 1.

Let C(t′) be the Cauchy tensor, expressing deformation at past
time t′ relative to the configuration at the present time t > t′ and
C−1(t′) is the Finger tensor, expressing deformation at present
time t relative to the configuration at past time t′. In a general
extensional flow the relative Hencky (or logarithmic) strain, ε,
and the relative extension ratio (or principal stretch ratio), λ,

are correspondingly equal to λ = exp(ε) = exp
(∫ t

t′ ε̇(t′′)dt′′
)

.

Then, the Finger tensor is:

C−1(t′) =

⎡
⎢⎣

λ2 0 0

0 λ2m 0

0 0 λ−2(m+1)

⎤
⎥⎦ (6)

with its first and second invariants, respectively, equal to
I1 = λ2 + λ2m + λ2(m+1) and I2 = λ−2 + λ−2m + λ2(m+1), and eigen-
values equal to the square of the principal stretch ratios, λ, λm

and, λ−(m+1). The (I1 − I2) difference decreases with m and is a
measure of the alignment strength of the flow; its relative value
is often invoked as the reason that flows of similar intensity but
different geometry generate dissimilar stress response [40].

3. The power-law damping function: justification and
significance

For the stress calculation, we use Eq. (1), combined with Eq.
(4):

σ =
∫ t

−∞
M(t − t′)

⎡
⎢⎣

λ(t, t′)2−n 0 0

0 λ(t, t′)2m−n 0

0 0 λ(t, t′)−2(m+1)−n

⎤
⎥⎦ dt′ (7)
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