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On the importance of the pressure dependence of viscosity in steady
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Abstract

Four steady non-isothermal viscometric flows of a class of compressible and incompressible fluids with a viscosity depending on the shear rate,
pressure and temperature are considered and consistency relations between the pressure gradient in the flow direction and that in the direction of
the velocity gradient are derived. In particular, the dependence of the viscosity on the pressure plays the most significant role in these relations.
Examples of pressure fields obeying these compatibility conditions are given and their significance is examined. In particular, it is shown that
unidirectional flows in compressible and incompressible fluids are the exception rather than the rule when the viscosity depends on pressure.
Motivated by this, we examine the fountain flow effect for an incompressible fluid with a pressure dependent viscosity under isothermal conditions
using the finite element method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider four steady velocity fields: channel flow, simple
shearing flow, Poiseuille flow and Couette flow. It is well
known that these are possible in every incompressible fluid
if the viscosity η depends on the shear rate γ̇ ≥ 0. Suppose
that the viscosity depends on the absolute temperature T as
well, i.e., let η = η(T, γ̇). If we assume that in each one of the
flows, the temperature gradient is parallel to the velocity gra-
dient, one can show that the assumed velocity and temperature
fields are consistent with the equations of motion and the bal-
ance of energy equation. For example, see the book by Bird
et al. [1] on transport phenomena where such problems are
discussed.

Now, let us suppose that the viscosity depends on a third vari-
able, viz., the pressure p. That is, η = η(p, T, γ̇). Do the assumed
velocity and temperature fields satisfy the equations of motion?
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It will be shown below that in each flow, new features arise. For
example, in the channel flow discussed in Section 3, it is found
that the pressure gradient in the flow direction induces a second
one in the direction of the velocity gradient; from this, it follows
that normal stress effects appear. If the viscosity η depends on the
pressure p only and is of the form η = αp, where α > 0 is a con-
stant, no flow can occur due to a constant pressure gradient in the
flow direction; this is also true for the Poiseuille flow discussed
in Section 5. However, under an exponentially diminishing gra-
dient, a channel flow can exist which turns out to be physically
unacceptable. if η = f (T ) + (p/γ̇), then a rectilinear flow can-
not occur in a channel or in a pipe of circular cross-section (see
Sections 3 and 5). However, a simple shearing flow is feasible
provided the temperature field satisfies a simple condition (see
Section 4).

Turning to the Couette flow in Section 6, it is shown there that
the velocity field ṙ = 0, θ̇ = ω(r), ż = 0, and the temperature
field T = T (r) are consistent with the equations of motion
because the pressure gradient ∂p/∂θ = 0. This result that a
pressure gradient in the radial direction does not induce one
in the azimuthal direction is in contrast with the channel and
Poiseuille flows studied here. It arises solely out of the presence
of the inertial term in the radial direction. Thus, it appears that
rectilinear flows in fluids with a pressure dependent viscosity
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is less likely than two-dimensional flows. That is, secondary
flows are likely to occur.

From the foregoing, it is obvious that temperature and shear
rate dependence of the viscosity are not problematic; only the
pressure dependence is. Hence, one of the aims of this work is
to explore the connection between the two mutually orthogonal
pressure gradients when they exist and the impact they have on
a given flow in question due to the pressure dependence of vis-
cosity. Before investigating the importance of this property, one
has to ask a fundamental question: can the viscosity in an incom-
pressible fluid be a function of pressure? The reason is that in the
traditional approach to continuum mechanics, the pressure is de-
fined as an entity which produces zero stress power in isochoric
motions (for example, see Section 33 of Huilgol and Phan-Thien
[2]). Hence, it is pleasing to discover through the researches of
Antman [3], and Antman and Marlow [4] that material functions,
such as viscosity and normal stress differences, can depend on
the indeterminate part of the stress tensor, viz., the pressure term.
Hence, our study of incompressible fluids with a pressure depen-
dent viscosity is compatible with their conclusions. See Hron et
al. [5] as well for a thorough discussion of this matter.

Now, let us enlarge the context further by assuming that the
fluid is compressible. Do the conclusions regarding the four
shearing flows hold true here? In order to answer this, we con-
sider a class of compressible fluids whose material properties
depend on pressure, temperature and the three invariants of the
first Rivlin-Ericksen tensor [6]. By assuming that the compo-
nent of the stress tensor, which is isotropic and different from
the pressure term, vanishes in shearing flows, we will show that
the equations of motion are identical for both compressible and
incompressible fluids. Thus, conclusions reached about the for-
mer apply to the latter with minor changes. Extensions of some
of the results to the Criminale–Ericksen–Filbey model [7] and
viscoplastic fluids are made in Sections 7 and 8.

Finally, having demonstrated that the pressure dependence
of the viscosity is highly significant, we examine its role in the
fountain flow effect in Section 9 using finite elements, and show
that it is equivalent to the effect found in shear thinning fluids
for the two models studied here.

2. The constitutive relations

In order to examine compressibility effects, one approach
is to assume that the stress tensor depends on ρ, which is the
density, the absolute temperature T > 0, along with some kine-
matical variables. For example, the Stokesian fluids described
by Eringen ([8], Section 5.7) are defined in the above manner.
That is, one defines the total stress tensor T through:

T = −p1 + S. (2.1)

Here, the ‘thermodynamic pressure’ p, the density ρ and the
temperature T satisfy an equation of state:

f (p, ρ, T ) = 0. (2.2)

From the above implicit equation, if one assumes that one can
solve for the pressure term as p = p(ρ, T ), we have five quanti-
ties, viz., ρ, T , and the three components of the velocity field v, to

be found from the five equations of continuum mechanics. These
are the continuity equation, the three equations of motion and the
balance of energy equation. Of course, in order to solve these, it
is essential to specify the constitutive relations for the extra stress
tensor S, the internal energy and the heat flux vector [1,2,8]. Nat-
urally, S will depend on ρ, T and some kinematical variables.

In the methodology adopted here, we suppose that we can
solve Eq. (2.2) for the density, i.e., ρ = ρ(p, T ). Then, the five
unknowns become p, T, v. In turn, this suggests that we de-
fine S in terms of p, T , and the relevant kinematical variables.
In analogy with the Stokesian fluids, we shall study a class of
compressible fluids of the form:

S = λ̂(p, T, I1, I2, I3)1 + η̂(p, T, I1, I2, I3)A1, (2.3)

where A1 is the first Rivlin–Ericksen tensor [6]. That is, in terms
of the velocity field v and its gradient L = ∇v, we define:

A1 = L + LT, (2.4)

with LT being the transpose of L. Moreover, in Eq. (2.3),
I1, I2, I3 are the following three invariants of A1:

I1 = tr A1, I2 = tr A2
1, I3 = tr A3

1, (2.5)

with tr being the trace operator.
Now, in shearing flows, it is well known that both I1 = 0, and

I3 = 0. Thus, if we wish to obtain equations of motion which
are identical for compressible and incompressible fluids in this
class of flows, it is necessary to demand that

λ̂(p, T, 0, I2, 0) = 0. (2.6)

Next, we shall assume that in shearing flows:

η̂(p, T, 0, I2, 0) = η(p, T,
√

I2/2) = η(p, T, γ̇), (2.7)

where γ̇ ≥ 0 is the shear rate.
In sum, the compressible fluid has the following constitutive

relation in shearing flows:

T = −p1 + η(p, T, γ̇)A1. (2.8)

The incompressible fluid has the same relation except that p does
not satisfy a separate equation of state.

In addition, the thermodynamic pressure in a compressible
fluid must always be positive, i.e., p > 0. While this is not re-
quired in an incompressible fluid since the datum can be set to
zero anywhere in a flow, it is a requirement that η > 0 when we
prescribe the viscosity η as a function of p. These observations
play a crucial role in the sequel, although the impact is studied
extensively for the case of the channel flow only.

3. Channel flow

We shall assume that a steady channel flow occurs in the x-
direction with a velocity field u = u(y), where −1 ≤ y ≤ 1. The
boundary conditions are such that u(±1) = 0. Consequently,
we assume that du/dy = u′(y) > 0 in −1 < y < 0, so that γ̇ =
u′(y); in 0 < y < 1, clearly γ̇ = −du/dy, of course. In addition,
we let the temperature field T = T (y) as well.
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