FISEVIER

Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Flexural behavior of ECC-concrete composite beams reinforced with steel bars

Wen-Jie Ge a,*, Ashraf F. Ashour b, Xiang Ji a, Chen Cai a, Da-Fu Cao a

- ^a College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
- ^b School of Engineering, University of Bradford, Bradford BD7 1DP, UK

HIGHLIGHTS

- Calculate formula for deflections, cracking, yield and ultimate moments are proposed.
- Experimental testing of steel reinforced ECC-concrete composite beams is carried out.
- Various failure modes of ECC-concrete composite beams are identified.
- Validation of the proposed equations is achieved against experimental results.
- Parametric analysis on the flexural behavior of composite beams is conducted.

ARTICLE INFO

Article history: Received 20 May 2017 Received in revised form 7 September 2017 Accepted 25 October 2017

Keywords: ECC Concrete Composite beams Flexural behavior Ductility Deflection Energy dissipation

ABSTRACT

This paper presents analytical technique and simplified formulas for the calculations of cracking, yield and ultimate moments of different cases as well as deflections of ECC-concrete composite beams reinforced with steel bars. The technique is based on the simplified constitutive models of materials, strain compatibility, perforce bond of materials and equilibrium of internal forces and moment. Experimental testing of eleven ECC-concrete composite beams reinforced with steel bars is also presented. All beams tested had the same geometrical dimensions but different steel reinforcement strength and ECC thickness. The proposed formulas showed good agreement with the experimental results of various moment values and deflections. A parametric analysis shows that yield and ultimate moments increase with the increase of concrete strength in case of compression failure but, essentially, remain unchanged in case of tensile failure. With increasing the tensile resistance, for example by increasing ECC height replacement ratio, reinforcement ratio, strength of steel reinforcement and ECC, ultimate curvature and energy dissipation increase in case of tensile failure and decrease in case of compressive failure. On the other hand, ductility and energy dissipation ratio decrease with the increase of reinforcement ratio and strength, but, essentially, remain unchanged with increasing the height replacement ratio and strength of ECC.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Under the combined effects of mechanical loads and environmental exposure, many reinforced concrete structures deteriorate due to steel corrosion and cannot meet the requirement of ultimate limit state and durability. Therefore, repair and rehabilitation of such structures have become a large part of construction activity.

During the last decade, concrete technology has been undergoing rapid development, resulting in the production of a new concept of engineered cementitious composite (ECC) to overcome the brittle behavior of cement-based materials. ECC exhibits

* Corresponding author.

E-mail address: gewj@yzu.edu.cn (W.-J. Ge).

multiple micro cracks, leading to a significant increase in strain capacity and ductile behavior. It has also excellent toughness and energy absorption capacity [1], self-healing ability [2,3], fire performance [4], remains durable under erosion environment (sulfate-chloride environment [2], freezing-thawing and sulfate coupling environment [5]).

Few investigations were devoted to improve the performance of ECC, such as hybridization with non-round polypropylene fiber and low modulus polyvinyl alcohol fiber [6], incorporating CaCO₃ whisker to improve compressive strength and tensile strain-hardening [7], increasing slag content improved the ductility, hardened air content, water absorption, porosity and sorptivity [5], using recycled concrete fines as microsilica sand substitute in the production of ECC [8], incorporating high volumes of fly ash and micro PVA

Nomenclature tensile strain in steel bar h_{p} vertical distance of concrete where its strain reaches $\varepsilon_{\rm co}$ tensile stress in steel bar to the tensile edge of cross-section $\sigma_{\rm s}$ yield strength of steel bar curvature radius of deformed composite beam f_{sy} rotating angle increment of cross-section yield strain of steel bar dθ ε_{sv} $E_{\rm s}$ elastic modulus of steel bar curvature of deformed composite beam Ø ultimate tensile strain of steel bar maximum deflection of specimen at mid-span ϵ_{su} f S a coefficient related to loading and supporting condition $\varepsilon_{\rm c}$ compressive strain in concrete Μ compressive stress in concrete moment acting on the cross-section σ_c concrete compressive strength length of composite beam $f_{\rm c}$ l_0 compressive strain corresponding to concrete stress of f_c Е elastic modulus of sectional material ϵ_{co} ultimate compressive strain of concrete I inertia moment of cross-section $\varepsilon_{\rm cu}$ concrete cube compressive strength cracking moment of cross-section $f_{cu,k}$ $M_{\rm cr}$ a coefficient related to the compressive stress-strain cross-section curvature corresponding to cracking mon $\varphi_{\rm cr}$ relationship of concrete tensile strain in concrete $M_{\rm v}$ yield moment of cross-section ε_{ct} tensile stress in concrete cross-section curvature corresponding to yield moment $\sigma_{ m ct}$ ultimate uniaxial tensile strain of concrete ultimate moment of cross-section $\varepsilon_{\rm ctu}$ $M_{\rm u}$ cross-section curvature corresponding to ultimate moultimate uniaxial tensile stress of concrete $f_{\rm ctu}$ $\varphi_{\rm u}$ compressive strain in ECC ment ϵ_{ec} curvature ductility of cross-section $\sigma_{ m ec}$ compressive tress in ECC u_σ compressive strength of ECC (peak point of ECC comenergy dissipation capacity of elastic stage $f_{\rm ecp}$ pressive stress-strain curve) E_{p} energy dissipation capacity of whole stage (up to ulticompressive strain corresponding to peak stress of ECC mate curvature φ_{II}) $\varepsilon_{\rm ecp}$ energy dissipation ratio f_{ecp} $r_{\rm E}$ ultimate compressive stress of ECC (after peak point) length of composite beam $f_{\rm ecu}$ 1 ultimate compressive strain corresponding to ultimate length of the pure flexural span $l_{\rm m}$ $\varepsilon_{\rm ecu}$ length of the flexural-shear span stress of ECC f_{ecu} $l_{\rm mv}$ tensile strain in ECC $\epsilon_{\rm et}$ $l_{\rm f}$ length of the free overhang span ECC height replacement ratio tensile stress in ECC $\sigma_{ m et}$ $r_{ m h}$ tensile stress of ECC at first cracking effective height of cross-section h_0 $f_{\rm etc}$ tensile strain of ECC at first cracking ultimate tensile strength of steel bar $f_{\rm su}$ $\varepsilon_{ m etc}$ $M_{\rm cr,t}$ ultimate tensile strength of ECC experimental cracking moment $f_{\rm etu}$ ultimate tensile strain of ECC $M_{v,t}$ experimental yield moment $\varepsilon_{\mathrm{etu}}$ width of cross-section experimental ultimate moment b $M_{u.t}$ $M_{\rm cr,c}$ h height of cross-section predicted cracking moment distance of the center of steel bars to the cross-section predicted yield moment h_s $M_{y,c}$ tensile edge $M_{u.c1}$ predicted ultimate moment by using yield strength of thickness of ECC $h_{\rm e}$ steel reinforcement h_{t} height of cross-section part in tension (neutral axis predicted ultimate moment by using ultimate strength $M_{u,c2}$ of steel reinforcement vertical distance of any point to the tensile edge of reinforcement ratio. x ρ_{s} cross-section

fibers to improve the cyclic freeze-thaw resistance and microstructure of ECC [3,9], adding waterproofing admixture to improve wetting property and reduce the sorptivity, and shrinkage-reducing admixture together with calcium sulfoaluminate cement to control the drying shrinkage [10].

Experimental study showed that the use of ECC in the tensile zone around longitudinal steel reinforcement has slightly improved both the flexural capacity [11–13] and deformation ability [12,13], but significantly reduced the crack width before yielding of steel reinforcement [12]. Therefore, durability of composite ECC/reinforced concrete elements can be greatly improved due to the enhancement of waterproof and corrosion resistance [14–16]. A theoretical analysis of bending resistance of ECC-RC composite beams was developed and it is compared well with the experimental results [17,18]. On the other hand, when the ECC thickness increased beyond a certain critical value, both the flexural strength and ductility of ECC-concrete composite beams significantly enhanced [19,20].

Because of its excellent tensile performance, ECC can be used in strengthening unreinforced masonry walls [16,21–23], reducing the extensive amount of transverse reinforcements in beam-column joints of rigid-framed bridges, enhancing the joint seismic resistance and reducing reinforcement congestion and construction complexity [24–27]. ECC can also be used in hydraulic structures for its good durability [2,16,28], highway engineering for its ability of withstanding large deformations from heavy loading and temperature variations [29], in hot arid coastal climatic condition structures [30], in lightweight building facade and pavement [31], in pavement overlay to extend the service life [32] and in impact and blast resistant protective panels [16]. The wide range of applications of ECC demonstrates that incorporating ECC can significantly improve the performance of structures and reduce the associated life cycle cost.

Theoretical analysis covering the whole loading process of composite beams is still limited. Based on simplified constitutive models of materials and equilibrium of internal forces and moments,

Download English Version:

https://daneshyari.com/en/article/6717333

Download Persian Version:

https://daneshyari.com/article/6717333

<u>Daneshyari.com</u>