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a  b  s  t  r  a  c  t

Capillary  interactions  are  fundamentally  important  in many  scientific  and  industrial  fields.  However,
most  existing  models  of  the  capillary  bridges  and capillary  forces  between  two  solids  with  a  mediated
liquid,  are  based  on  extremely  simple  geometrical  configurations,  such  as  sphere–plate,  sphere–sphere,
and  plate–plate.  The  capillary  bridge  and  capillary  force  between  two  axisymmetric  power–law  profile
particles  with  a mediated  constant-volume  liquid  are  investigated  in  this  study.  A  dimensionless  method
is  adopted  to calculate  the capillary  bridge  shape  between  two  power–law  profile  particles  based  on  the
Young–Laplace  equation.  The  critical  rupture  criterion  of  the  liquid  bridge  is shown  in  four  forms  that
produce  consistent  results.  It was  found  that  the  dimensionless  rupture  distance  changes  little  when  the
shape  index  is larger  than  2. The  results  show  that  the  power–law  index  has  a  significant  influence  on
the  capillary  force  between  two  power–law  particles.  This  is  directly  attributed  to the  different  shape
profiles  of  power–law  particles  with  different  indices.  Effects  of  various  other  parameters  such  as  ratio
of  the  particle  equivalent  radii,  liquid  contact  angle,  liquid  volume,  and  interparticle  distance  on  the
capillary  force  between  two  power–law  particles  are  also  examined.

© 2015  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

Capillary interactions play a significant role in many scientific
and industrial fields. These interactions must be accounted for
in studies of particle cohesiveness and wet agglomeration pro-
cesses, which are related to soil mechanics, granular materials,
pharmaceuticals, and civil engineering (Rossetti, Pepin, & Simons,
2003; Sun, Wang, & Hu, 2009). In recent years, capillary inter-
actions between micro- and nano-particles have attracted much
attention because of the rapid development of micro and nano-
technology. Capillary interactions can, in principle, be exploited for
gripping applications, and several types of capillary grippers have
been proposed for microparticle manipulation (Lambert, Seigneur,
Koelemeijer, & Jacot, 2006; Fantoni, Hansen, & Santochi, 2013;
Fan, Wang, Rong, & Sun, 2015). Capillary forces are also uti-
lized to control self-assembly processes from the millimeter to
nanometer scale in microsystem engineering (Mastrangeli et al.,
2009). Moreover, capillary interactions greatly affect force mea-
surements and nanomanipulation processes, as revealed in atomic
force microscopy (AFM) studies (Butt, Cappella, & Kappl, 2005;
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Tabor, Grieser, Dagastine, & Chan, 2012; Kim, Shafiei, Ratchford, &
Li, 2011; Onal, Ozcan, & Sitti, 2011). To use them effectively in these
related fields, it is necessary to fully understand and accurately
model capillary interactions.

There has been much work modeling and measuring cap-
illary forces between two particles. Based on thermodynamic
equilibrium and non-equilibrium conditions, two main cases are
considered when modeling the capillary forces. The first case
refers to a liquid bridge that has a constant curvature radius,
which is determined from the unsaturated vapor pressure in the
environment, as described by the Kelvin equation (Butt, 2008).
Pakarinen et al. (2005) investigated the capillary force between
a nanosphere and a flat surface and found that the often-used
model of the humidity-independent capillary force is reasonable
for spherical particles above 1 �m.  Xiao and Qian (2000) mea-
sured the adhesion force between a Si3N4 AFM tip and SiO2 or
n-octadecyltrimethoxysilane (OTE)/SiO2 substrates. For the former,
the adhesion force first increases and then decreases because of
strong capillary condensation. For the latter, the adhesive force is
almost independent of humidity because of weak capillary conden-
sation.

The second case corresponds to a constant-volume liquid bridge
based on the energy principle. Rabinovich, Esayanur, and Moudgil
(2005) calculated the capillary force between two  spheres with a
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Fig. 1. Liquid bridge between two axisymmetric power–law profile bodies. The
angle ϕ1 is determined by the normal line of the particle profile at point A and
the axisymmetric axis of the particle.

fixed volume liquid bridge, and discussed the applicability of the
Derjaguin approximation for the interaction between the spheres.
De Souza, Brinkmann, Mohrdieck, Crosby, and Arzt (2008) inves-
tigated the capillary force between two plates with chemically
different properties, and noted that the capillary force decreases as
the asymmetry in contact angles is increased with the fixed sum of
contact angles. Yang, Tu, and Fang (2010) proposed a rupture model
of a capillary bridge between a micro sphere and a plane, and it was
found that the rupture distance increases with increasing spherical
radius, sphere hydrophobicity, and environmental humidity.

Geometrical configurations considered in capillary force mod-
eling have been mostly limited to sphere–plate (Israelachvili,
1992), sphere–sphere (Willett, Adams, Johnson, & Seville, 2000;
Lian, Thornton, & Adams, 1993; Payam & Fathipour, 2011), and
plate–plate (De Souza et al., 2008). However, in many real cases,
particle shapes are not so ideal and simple. For example, the gen-
eral shape of an AFM probe tip could be better described by a
power–law axisymmetric function as a result of the fabrication
method or in-use wear (Grierson, Liu, Carpick, & Turner, 2013).
Recently, the capillary force between a power–law probe tip and
a spherical particle or a plate under different humidity conditions
was investigated (Wang & Régnier, 2015). The effects of relative
humidity on the capillary forces were revealed in a dimensionless
form which is applicable for equilibrium conditions of the liquid
bridge. However, in applications such as micro/nano manipulation,
we are more interested in the capillary force between two particles
with a constant-volume liquid bridge.

In this study, the capillary bridge and capillary force between
two power–law profile particles with a constant-volume liquid
bridge are investigated. In the Modeling the capillary bridge and
capillary force section, modeling processes of the capillary bridge
and capillary force between two power–law particles are presented
in detail. In the Results and discussion section, the rupture criteria
for the liquid bridges are demonstrated, and effects of each param-
eter on the capillary forces are analyzed. Finally, conclusions are
given in the Conclusions section.

Modeling the capillary bridge and capillary force

Fig. 1 shows the liquid bridge between two power–law profile
bodies. In this figure, �1 and �2 are the liquid contact angles at the
two solid–liquid interfaces. Herein, relatively small liquid bridges
are considered and gravitational deformations of the menisci are
neglected. For the liquid bridge between two equal spheres with
radii R, it was found that a modified Bond number V*Bo can be used
to predict the effect of gravity on the pendular liquid bridge, in
which V* is the dimensionless volume with V* = V/R3, and Bo is the
Bond number with Bo = �gR2/� (Adams, Johnson, Seville, & Willett,
2002). The parameter � is the density of the liquid, g is the accel-
eration due to gravity, and � is the surface tension of the liquid.

When V*Bo < 0.01, the effect of gravity can be neglected (Adams
et al., 2002). It is assumed that this criterion is also applicable to
the liquid bridge between two power–law profile particles.

The profile of the top particle can be written as

Z1 = Xn1

n1Rn1−1
1

+ D, (1)

where n1 is the power–law shape index of the top particle. For
special cases, it denotes a parabolic shape when n1 = 2. R1 can be
treated as the equivalent radius of the top particle, and the equiva-
lent half-filling angle can be defined as ϕ1 = XA/R1 accordingly. D is
the distance between the two power–law profile particles. When
n1 = 1, it is a conical shape with conical angle of 45◦ (Zheng & Yu,
2007). Similarly, the profile of the bottom particle can be written
as

Z2 = − Xn2

n2Rn2−1
2

, (2)

where n2 is the power–law shape index of the bottom particle.
R2 can be treated as the equivalent radius of the bottom particle,
and the equivalent half-filling angle can be defined as ϕ2 = XB/R2
accordingly.

The dimensionless method was  used to simplify the calculation
of the liquid bridge shape. If we  let z = Z/R1, x = X/R1, and d = D/R1,
then Eqs. (1) and (2) can be nondimensionalized as follows:

z1 = xn1

n1
+ d, (3)

z2 = − xn2

n2
(

R2/R1
)n2−1

. (4)

According to the Young–Laplace equation, the liquid meniscus
Z3 = f(X) satisfies the following equation:

− X ′′(
1 + X ′2

)3/2
+ 1

X
(

1 + X ′2
)1/2

= �P

�
, (5)

where X ′ = dX/dZ , X ′′ = d2X/dZ2. �P  is the hydrostatic pressure
difference across the air–liquid interface and � is the surface ten-
sion of the liquid. Eq. (5) can be nondimensionalized as

− x′′(
1 + x′2

)3/2
+ 1

x
(

1 + x′2
)1/2

= R1�P

�
= �p.  (6)

The dimensionless volume v of the liquid bridge is

v = v0 − vt − vb, (7)

where v0, vt, and vb represent the dimensionless volume of the col-
umn  formed by the meniscus profile, the dimensionless volume of
the immersed part of the top power–law particle, and the dimen-
sionless volume of the immersed part of the bottom power–law
particle, respectively. These terms can be obtained through inte-
gration:

v0 =
zA∫
zB

�x2dz3, (8)

vt =
zA∫

d

�x2dz1 = �

n1 + 2
xn1+2

A , (9)

vb =
0∫
zB

�x2dz2 = �

n2 + 2

(
R2

R1

)n2−1
xn2+2

B (10)
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