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a  b  s  t  r  a  c  t

The  lattice  Boltzmann  method  (LBM)  is  a useful  technique  for  simulating  multiphase  flows  and  modeling
complex  physics.  Specifically,  we  use LBM  combined  with  a direct-forcing  (DF)  immersed  boundary  (IB)
method to  simulate  fluid–particle  interactions  in  two-phase  particulate  flows.  Two  grids  are  used  in the
simulation:  a fixed  uniform  Eulerian  grid  for the  fluid  phase  and  a  Lagrangian  grid  that  is attached  to
and  moves  with  the immersed  particles.  Forces  are  calculated  at each  Lagrangian  point.  To exchange
numerical  information  between  the  two grids,  discrete  delta  functions  are  used.  The  resulting  DF  IB-LBM
approach  is  then  successfully  applied  to a variety  of  reference  flows,  namely  the sedimentation  of one  and
two  circular  particles  in a vertical  channel,  the  sedimentation  of  one  or  two spheres  in an  enclosure,  and
a  neutrally  buoyant  prolate  spheroid  in  a Couette  flow.  This  last  application  proves  that  the  developed
approach  can  be  used  also  for non-spherical  particles.  The  three  forcing  schemes  and  the  different  factors
affecting  the  simulation  (added  mass  effect,  corrected  radius)  are  also  discussed.

©  2015  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

The transport of suspended solid particles in a fluid appears
in many processes associated with filtration, crystallization,
pollution control, blood clogging, microfluidic devices, medical
applications, and the food industry (Ashraf Ali, Janiga, Temmel,
Seidel-Morgenstern, & Thévenin, 2013). Therefore, an accurate and
efficient modeling of a flow interacting with moving particles is
of high importance. In the advanced applications of computational
fluid dynamics (CFD), the mesoscopic approach has received par-
ticular attention in recent years, specifically in connection with the
lattice Boltzmann method (LBM). This method has been used to
analyze a variety of multiphase and multicomponent flows (Bogner
& Rüde, 2013; Dietzel, Ernst, & Sommerfeld, 2011; Ernst, Dietzel, &
Sommerfeld, 2013; Shan & Chen, 1993; Yu & Fan, 2010); it does
not solve the macroscopic conservation equations directly, but
rather models the interactions of some fictitious particles statis-
tically using the Boltzmann equation. These particles, which are
assigned properties capturing fluid attributes, are allowed to move
between lattice nodes or stay at rest. The macroscopic flow prop-
erties such as density, velocity, and pressure can be retrieved from
the collective behavior of the microscopic states of the particles
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including their location and velocity. Therefore, the LBM calculates
the evolution of the particle distribution function. For several appli-
cations, it is a promising alternative to classical solvers based on
finite differences, finite volumes, finite elements, or spectral meth-
ods (Sukop & Thorne, 2006; Succi, 2001). However, because it is
based on regular Cartesian grids, it fails to directly simulate curved
boundaries. The simplest way to represent a curved boundary is
the bounce-back rule, which is however only of first-order accu-
racy. This method was  applied to the motion of solid particles,
see in particular Ladd (1994a, 1994b). To improve the accuracy of
the bounce-back method, different schemes have been proposed.
One approach, the immersed boundary method (IBM), is a non-
boundary fitted method. The IBM was first introduced by Peskin
(1972, 1977) to model the blood flow in the heart. In the IBM,
the fluid equations are discretized on a fixed Eulerian grid over
the entire domain and the immersed boundary is discretized on
a moving Lagrangian mesh. As both IBM and LBM are based on
a Cartesian grid, a combination can be readily applied to simula-
tions of moving boundary problems. This combination is referred
to as IB-LBM in the following. In the IBM, the force density is eval-
uated at each Lagrangian point using either the penalty method
(Peskin, 1977), the momentum exchange method (Niu, Shu, Chew,
& Peng, 2006), or the direct forcing (DF) method (Mohd-Yusof,
1997; Uhlmann, 2005). Feng and Michaelides (2004) first devel-
oped an IB-LBM coupled model and applied it to simulate the
sedimentation of a large number of particles in an enclosure. In
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their approach (penalty method), the particle boundary was treated
as a deformable medium with high stiffness. This method has a
drawback in that it requires the a priori selection of the stiffness
parameter, based on the specific problem to be solved. They devel-
oped later the DF IB-LBM model (Feng & Michaelides, 2005) based
on an earlier proposal by Mohd-Yusof (1997) for fixed complex
boundaries. In the DF method, the force density term is naturally
determined in the calculation process and there is therefore no
need to consider the free parameter determining the stiffness coef-
ficient, making this method much more efficient. Niu et al. (2006)
proposed an IB-LBM called the momentum-exchange-based IB-
LBM. Dupuis, Chatelain, and Koumoutsakos (2008) proposed a DF
IB-LBM without solving the Navier–Stokes equations (NSE) for the
evaluation of boundary force density. Their method is considered
as a pure DF IB-LBM.

IB-LBM has been applied in recent years to an increasing vari-
ety of flow conditions. Kang and Hassan (2011) used a DF IB-LBM
based on the split-forcing LBM with various interface schemes
for flow problems with stationary complex boundaries. They sug-
gested the IB-LBM with a sharp interface scheme for complex
stationary boundary problems but stated that for moving bound-
ary problems, the sharp interface scheme can introduce spurious
oscillations. Therefore, for moving boundary problems, the diffuse
interface scheme is more suitable because it produces a smooth
evolution of forcing points. In the diffuse interface scheme, forcing
points are located on the immersed object boundary.

Suzuki and Inamuro (2011) investigated the internal mass effect
for various particle Reynolds numbers through the IB-LBM simula-
tions of a moving body in a fluid. They found that the internal mass
effect is fairly small for Reynolds numbers about 1, but grows as
the Reynolds number increases. The effect becomes distinct for a
Reynolds number over 10. Recently, the authors proposed a LBM
combined with a higher-order IBM using a smooth velocity field
near boundaries (Suzuki & Inamuro, 2013), to expand the velocity
field smoothly into the body domain across the boundary.

The literature on particulate flow deals mostly with circular
(2D) and spherical (3D) particles. Because real particles of inter-
est are very often non-spherical, particle shape is an interesting
aspect to study in regard to the flow behavior of particulate sus-
pensions. Although some researchers have previously investigated
non-spherical particles (Aidun, Lu, & Ding, 1998; Ding & Aidun,
2000; Huang, Yang, Krafczyk, & Lu, 2012; Mao  & Alexeev, 2014;
Rosén, Lundell, & Aidun, 2014), the application of IB-LBM to such
particle geometries poses many challenges.

In this paper, the development of a DF IB-LBM method suitable
for particulate flows is described. The comparisons involve circular
and elliptical particles in 2D flows, and spherical and spheroidal
particles in 3D flows. The paper is organized as follows. First, the
governing equations of LBM and DF IBM together with the dis-
cretized equations are presented. Simulation results of moving
particles for different 2D and 3D flows of increasing complexity
are then discussed. After this, we provide concluding remarks.

Model formulation

Lattice Boltzmann method

The LBM focuses on the evolution of a discretized particle distri-
bution function, f(x, t, �), which represents the probability of finding
a particle in a certain location x with a certain velocity � at a certain
time t. In contrast to the mass conservation and NSE, which are for-
mulated in terms of macroscale variables (velocity, pressure), the
LBM operates at a mesoscopic level via the distribution functions f,
which are simply summed up to obtain the macroscopic dynamics.
A discretization of the Boltzmann equation in time and space, and

the restriction of velocity space {�} into a finite set of velocities {ci}
with which particles move around in the lattice, leads to the lattice
Boltzmann equation:

fi(x + ci�t,  t + �t)  − fi(x, t) = −1
�

[
fi(x, t) − f eq

i
(x, t)

]
, (1)

where fi is the distribution function of particles moving with veloc-
ity ci and the right-hand side accounts for the single relaxation
time (SRT) Bhatnagar–Gross–Krook collision term (Bhatnagar,
Gross, & Krook, 1954), which represents the variation induced in
the distribution function because of collisions between the fic-
titious particles. Here, � is the dimensionless mean relaxation
time and �t  the time step. The equilibrium distribution func-
tion f eq

i
(x, t) is obtained using the Taylor series expansion of the

Maxwell–Boltzmann distribution function with velocity u up to
second order. It can be expressed as:

f eq
i

= ωi�

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
, (2)

where u is velocity magnitude, ωi the weight associated with the
velocity ci, and the speed of sound cs is model-dependent. The
macroscopic velocity u in Eq. (2) must satisfy the requirement for
low Mach number M, i.e., |u|/cs = M � 1. This holds as the equivalent
of the CFL condition for the classical Navier–Stokes solvers.

In the present work, for the two-dimensional (2D) and
three-dimensional (3D) flows, the nine-velocity model (D2Q9)
and the nineteen-velocity model (D3Q19) are applied, respec-
tively. The speed of sound in Eq. (2) is given by cS =
1/

√
3. The weight coefficients are ω1 = 4/9, ω2 = · · · = ω5 = 1/9,

and ω6 = · · · = ω9 = 1/36 for the D2Q9 model, and ω1 = 1/3,
ω2 = · · · = ω7 = 1/18, ω8 = · · · = ω19 = 1/36 for the D3Q19 model. The
speeds with which the corresponding distribution functions fi
propagate in the D2Q9 model are ci = {cix, ciy} with cix = (0, 1, 0,
−1, 0, 1, −1, −1, 1) and ciy = (0, 0, 1, 0, −1, 1, 1, −1, −1). The D3Q19
model has velocity vectors ci = {cix, ciy, ciz}, where cix = (0, 1, −1, 0,
0, 0, 0, 1, −1, 1, −1, 1, −1, 1, −1, 0, 0, 0, 0), ciy = (0, 0, 0, 1, −1, 0, 0, 1,
1, −1, −1, 0, 0, 0, 0, 1, −1, 1, −1), and ciz = (0, 0, 0, 0, 0, 1, −1, 0, 0, 0,
0, 1, 1, −1, −1, 1, 1, −1, −1) (Guo & Shu, 2013).

Applying the Chapman–Enskog multi-scale analysis, the SRT-
LBM recovers the NSE with first-order accuracy in time and second-
order accuracy in space, when density and velocity are defined by
the 0th and 1st moments of the probability distribution function,
respectively:

� =
∑
i

fi, (3)

�u =
∑
i

cifi. (4)

Conceptually, the SRT-LBM algorithm is implemented in two
stages: the first establishing the collision of particles, which con-
trols the relaxation toward equilibrium; and the second developing
the streaming of particles in which the distribution functions are
shifted to neighboring lattice cells.

Collision : f ′i (x, t) = fi(x, t) − �t

�

[
fi(x, t) − f eq

i
(x, t)

]
, (5)

Streaming : fi(x + ci�t,  t + �t) = f ′i (x, t). (6)

The pressure, p, is determined from the equation of state:

p = �c2
s , (7)

and the kinematic lattice viscosity, �, is determined using:

� =
(
� − 1

2

)
c2

s�t.  (8)
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