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a  b  s  t r  a  c  t

Brownian  coagulation  is the most  important  inter-particle  mechanism  affecting  the size  distribution  of
aerosols.  Analytical  solutions  to the  governing  population  balance  equation  (PBE)  remain  a challenging
issue.  In this  work,  we  develop  an  analytical  model  to  solve  the  PBE  under  Brownian  coagulation  based  on
the  Taylor-expansion  method  of  moments.  The  proposed  model  has  a clear  advantage  over  conventional
asymptotic  models  in  both  precision  and efficiency.  We first  analyze  the  geometric  standard  deviation
(GSD)  of aerosol  size  distribution.  The  new  model  is  then  implemented  to  determine  two  analytic  solu-
tions,  one  with  a varying  GSD  and  the  other  with  a constant  GSD.  The  varying  solution  traces  the evolution
of  the  size  distribution,  whereas  the  constant  case  admits  a decoupled  solution  for  the  zero  and  second
moments.  Both  solutions  are  confirmed  to have  the  same  precision  as  the  highly  reliable  numerical  model,
implemented  by  the  fourth-order  Runge–Kutta  algorithm,  and  the  analytic  model  requires  significantly
less  computational  time  than  the  numerical  approach.  Our  results  suggest  that the  proposed  model  has
great  potential  to  replace  the  existing  numerical  model,  and  is  thus  recommended  for  the  study  of  physical
aerosol  characteristics,  especially  for rapid  predictions  of  haze  formation  and  evolution.

© 2014  Chinese  Society  of  Particuology  and  Institute  of  Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

The population balance equation (PBE) has become a funda-
mental equation in the study on aerosol dynamical processes
(Friedlander, 2000). In mathematics, the PBE is a strong non-linear
equation with the same mathematical structure as Boltzmann’s
transport equation. Thus, an exact analytical solution cannot be
achieved. Because of the relative simplicity of implementation and
low computational cost, the method of moments has been exten-
sively used to solve the PBE, especially when coupling the PBE to
the computational fluid dynamics (Buesser & Pratsinis, 2012; Fox,
2012; Murfield & Garrick, 2013; Yu & Lin, 2010a). Unfortunately, in
almost all cases, the method of moments must be executed as an
iterative numerical calculation, which inevitably becomes compu-
tationally expensive. Although some studies have solved the PBE
analytically, they assume that the aerosol size follows a log-normal
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distribution, which limits the applicability of these analytical mod-
els (Park & Lee, 2002).

The Taylor-expansion method of moments (TEMOM) was first
proposed to solve the PBE under Brownian coagulation (Yu, Lin,
& Chan, 2008). This method has received considerable attention
from aerosol scientists, and is advantageous for resolving multi-
ple dynamical processes, such as coagulation, condensation, and
nucleation (Goo, 2012; Yu & Lin, 2010a). In particular, the method
possesses the novel feature that it does not require any assump-
tions about the aerosol size distribution. To date, the asymptotic
behavior of the TEMOM has been analyzed mathematically (Chen,
Lin, & Yu, 2014a; Lin & Chen, 2013; Xie, 2014), and a variant ver-
sion has been developed (Chen, Lin, & Yu, 2014b). The efficiency and
precision of TEMOM over the entire size regime has been verified
by comparing its output with those from the generally acknowl-
edged methods of moments as well as the sectional method (Yu
& Lin, 2009a,b). However, similar to other successful methods of
moments, such as the quadrature method of moments (QMOM) and
direct QMOM (DQMOM) (Marchisio, Pikturna, Fox, Vigil, & Barresi,
2003; McGraw, 1997), the ordinary differential equation (ODE) of
the TEMOM has to be solved by an iterative numerical calculation
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Nomenclature

r particle radius, m
n particle number concentration density, m−3

B2 collision coefficient for the continuum-slip regime
C Cunningham correction factor
kb Boltzmann constant, J/K
Kn particle Knudsen number
mk kth moment of particle size distribution
g = m0m2/m2

1
Mk dimensionless kth moment
t time, s
T temperature, K
u  the point of Taylor-series expansion (m1/m0)
� particle volume, m3

�g geometric mean particle volume, m3

N0 total particle number concentration, m−3

Greek letters
�  kinematic viscosity, m2/s

 ̌ particle collision kernel
� gas viscosity kg/(m s)
� mean free path of the gas, m
�g geometric standard deviation of particle size distri-

bution
� dimensionless coagulation time: tN0B2 the contin-

uum regime; tNB1(�g0)1/6 in the free molecular
regime

Acronyms
PBE population balance equation
TEMOM Taylor-expansion method of moments
QMOM quadrature method of moments
DQMOM direct quadrature method of moments
ODE ordinary differential equation
GSD geometric standard deviation
NM numerical method
AM analytical method
AMV  analytical method with a varying g
AMC  analytical method with the constant g
SPSD self-preserving size distribution

(Yu et al., 2008). This inevitably increases the computational cost,
especially when coupled with the flow field calculation used in
many engineering particulate models and global aerosol models (Lu
& Bowman, 2010; Seinfeld & Pandis, 2012; Yu & Lin, 2010b). Thus,
an analytical solution to the TEMOM ODEs becomes necessary.

It is generally acknowledged that the TEMOM is preferable to
other methods of moments because of its simple mathematical
form (Yu et al., 2008). Besides the first three moments (m0, m1,
and m2), there is only one explicit variable, i.e., g = m0m2/m2

1. This
variable is commonly used as an index to represent the polydis-
persity of aerosol size distribution, and possesses the property that
it only varies over a very limited range, as shown in Fig. 1. In par-
ticular, in the free molecular regime and the continuum regime,
where the geometric standard deviation (GSD) of the size distribu-
tion can be represented by ln2 �g = (1/9)ln g, the variable g has been
shown to be constant. Thus, it is reasonable to treat g as a constant.
Consequently, it is possible to find an analytical solution for the
TEMOM ODEs. Unfortunately, this analytical solution has not yet
been calculated.

The aim of this study is to obtain analytical solutions of the PBE
involving the Brownian coagulation mechanism. In our derivation,

Fig. 1. Variation of geometric standard deviation �g with Knudsen number Kn. � is
the  free molecular path (68.41 in this study) and r is the geometric mean radius of
an aerosol particle. Aerosols with different initial size distributions (certain value
for  (�g , Kn)) converge finally to the self-preserving status with a definite �g , which
is  represented by ln2 �g = (1/9)ln g.

the PBE is first converted to the moment ODEs using TEMOM,  and
then resolved by separating the variables. To distinguish the ana-
lytical method from the numerical method, the solution for the
TEMOM ODEs using the fourth-order Runge–Kutta algorithm is
called the numerical model (NM), and the solution using separation
of variables is called the analytical model (AM). A brief descrip-
tion of the model is given in Background section, including the
theory relevant to the new model and its detailed derivation. The
computational parameters used in the calculation are presented in
Computations section. In Results and discussion section, we verify
the performance of the new model for aerosols at self-preserving
size distributions, and discuss the scope of its application.

Background

The theory relevant to the method of moments, as well as a
detailed derivation of TEMOM, was  presented in our previous work
(Yu et al., 2008). Thus, only a brief description of TEMOM is given
here. The integro-differential PBE was first proposed by Müller
(1928), and has the following form:

∂n(v, t)
∂t

= 1
2

∫ v

0

ˇ(v − v′, v′)n(v − v′, t)dv′
∫ ∞

0

ˇ(v′, v′)n(v′, t)dv′,

(1)

where n(v,t)dv is the number of particles whose volume is between
v and v + dv at time t, and ˇ(v, v′) is the collision kernel for two par-
ticles of volumes v and v′. The TEMOM ODEs have different forms in
the free molecular regime and the continuum regime with respect
to the coagulation kernel. Therefore, the analytical solution must
be treated differently in each regime.

(1) Free molecular regime (Kn > 100)

The collision kernel in the free molecular regime was  derived from
gas kinetic theory, and is expressed as:

ˇ(v, v′) = B1

(
1
v

+ 1
v′

)1/2
(v1/3 + v′1/3)

2
, (2)

where B1 = (3/4�)1/6(6kBT/	)1/2, kB is the Boltzmann constant, T is
the gas temperature, and 	 is the mass density of the particles. The
TEMOM is introduced to solve Eq. (1) with a closure model for the
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