Numerical study of aerosol particle deposition in simple and converging-diverging micro-channels with a slip boundary condition at the wall

Seyed Mohammad Javad Hosseini, Ataallah Soltani Goharrizi*, Bahador Abolpour
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman 76175, Iran

A R TICLE INFO

Article history:

Received 9 December 2012
Received in revised form 10 March 2013
Accepted 23 March 2013

Keywords:

Aerosol deposition
Micro-channel
Converging-diverging micro-channel
Slip boundary condition

Abstract

The design of micro-devices involving aerosol transport requires the study of the deposition of aerosols in micro-channels. In this study, the slip and no-slip boundary conditions for the gas flow regime were applied to the Navier-Stokes equations to obtain the particle deposition in simple and converging-diverging micro-channels. The equation of particle motion included inertial, viscous, Brownian, and gravity terms. It was found that the ratio of gravity to inertial effects controls the deposition of particles with diameters of $0.1-1 \mu \mathrm{~m}$, and the ratio of diffusion to inertial effects controls the deposition of particles with diameters of $0.01-0.001 \mu \mathrm{~m}$. Comparison between the no-slip and slip flow regimes showed that the deposition of 0.1 - to $1-\mu \mathrm{m}$-diameter particles was less and the deposition of 0.01 - to $0.001-\mu \mathrm{m}$-diameter particles was greater for the slip flow regime. There was no significant difference between slip and no-slip flow regimes for the deposition of 0.01 - to $0.1-\mu \mathrm{m}$-diameter particles. Finally, it was shown that the stagnated gas in the corners of the converging-diverging micro-channel produced similar gas velocity profiles under the slip and no-slip flow regimes.

© 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Micro-devices can produce, separate, or analyze aerosol particles since the size of micro-channels is on the order of that of aerosol particles (Gawad, Schild, \& Renaud, 2001; Khan, Gunther, Schmidt, \& Jensen, 2004; McClain, Culbertson, Jacobson, \& Ramsey, 2001; Nisisako, Torii, \& Higuchi, 2004; Pamme, Koyama, \& Manz, 2003; Sugiura, Nakajima, Itou, \& Seki, 2001). Additionally, there are new medical and industrial processes that include aerosol transport and demand investigation of the penetration of aerosols in micro-channels. Interest in micro-scale penetration of aerosols has thus increased.

Various aerosol penetrations have been studied, but there have been few studies relating to micro-channels. Heim, Wengeler, Nirschl, and Kasper (2006) used a T-shaped micro-mixer to mix aerosols and a gas stream to determine particle penetration inside walls under various conditions. Yamada, Nakashima, and Seki (2004) proposed an empirical method with which to separate particles by size in a pinched micro-channel and a micro-channel with a

[^0]rectangular cross-section. Takagi, Yamada, Yasuda, and Seki (2005) presented another method with which to separate particles using an asymmetrically arranged multiple-branch micro-device. This method can separate nonspherical biological substances, such as blood cells. Another medical investigation was carried out by Leslie, Domansky, Hamilton, Bahinski, and Ingber (2011) in aerosol drug delivery for the lung on a chip.

Liu and Nazaroff (2001) modeled the proportion of particles and reactive gases penetrating through building envelopes, as air enters through cracks and wall cavities. This model was developed for steady-state air flow penetrating idealized rectangular smooth surface cracks. In another work, they experimentally measured the particle penetration through surrogates of cracks in building envelopes (Liu \& Nazaroff, 2003). Xu, Liu, and Zhu (2010) obtained the particle penetration as a ratio of the downstream to upstream ultrafine particle concentrations across seven idealized cracks. They concluded that the crack length and height and the pressure drop across the cracks affected the particle penetration. Zhao, Chen, Yang, and Lai (2010) presented three approaches to predict coefficients of particle penetration through a single straight crack in building envelopes. Tavakoli, Mitra, and Olfert (2011) analytically studied the particle penetration through rectangular and cylindrical micro-channels. The particle penetration varied with the dimensionless deposition factor and Knudsen number (Kn) of

List of symbols	
C_{C}	Cunningham correction to Stokes drag law, defined as $C_{\mathrm{C}}=1+\left(2 \lambda / d_{\mathrm{P}}\right)\left(1.257+0.4 e\left(-\frac{1 . \tan _{\mathrm{P}}}{2 \lambda}\right)\right)$
$d_{i j}, d_{i k}$	deformation tensors
$d_{\text {P }}$	particle diameter (m)
EC	Eckert number
$F_{\text {B }}$	Brownian force (N)
$F_{\text {D }}$	drag force (N)
$F_{\text {L }}$	lift force (N)
$g_{\text {y }}$	acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)
k	constant ($k=2.594$)
$k_{\text {B }}$	Boltzmann constant
n	direction normal to the flow direction near the wall
P	pressure (Pa)
S_{0}	$\begin{aligned} & \text { spectral intensity defined as } S_{0}= \\ & \left(216 \nu k_{\mathrm{B}} T\right) /\left(\rho \pi^{2} d_{\mathrm{P}}^{2} C_{\mathrm{C}}\left(\rho_{\mathrm{P}} / \rho\right)^{2}\right) \end{aligned}$
s	flow direction near the wall
T	temperature (K)
t	time (s)
U	gas velocity in the x direction (m / s)
$U_{\text {in }}$	inlet gas velocity in the x direction (m / s)
$U_{\text {P }}$	particle velocity in the x direction (m / s)
$U_{\text {s }}$	tangential gas velocity in the flow direction (m / s)
$U_{\text {w }}$	wall velocity (m / s)
V	gas velocity in the y direction (m / s)
V_{P}	particle velocity in the y direction (m / s)
μ	gas viscosity ($\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$)
ρ	fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
ρ_{P}	density of the particle ($\mathrm{kg} / \mathrm{m}^{3}$)
γ	the ratio of specific heats of fluid
v	gas kinematic viscosity ($\mathrm{m}^{2} \mathrm{~s}$)
ξ_{0}	zero-mean, unit-variance-independent Gaussian random number
σ_{v}	cumulative momentum coefficient

the gas. They used the Navier-Stokes standard theory for the continuous regime of gas flow with $K n=0.01-0.1$.

The gas flow regimes for each range of the Knudsen number are defined as continuous for $K n=0-0.001$, slipping for $K n=0.001-0.1$, transition for $K n=0.1-1$, and molecular free transfer for $K n=1-\infty$ (Karniadakis, Beskok, \& Aluru, 2005). Therefore, the gas velocity distribution must be calculated by the Navier-Stokes equation with the Maxwell equation as the slip boundary condition (non-zero gas velocity) at the walls, in the 0.01-0.1 Knudsen number range. In the present study, this modeling procedure for aerosol deposition in a simple micro-channel and a converging-diverging micro-channel is described. The converging-diverging micro-channel is modeled for its likeness to the pores of porous solids.

2. Modeling

A finite volume method of computational fluid dynamics based on the SIMPLE algorithm was used for two-dimensional modeling of the flow field in micro-channels with smooth walls. The simple and converging-diverging micro-channels were meshed using rectangular elements and the corners of the converging-diverging micro-channel were meshed using a combination of rectangular and triangular elements. A smaller mesh size was used near the walls for greater accuracy. The mentioned mesh comprised approximately 30,000 nodes that were checked for grid independency. The motion of aerosol particles in micro-channels was modeled using the Lagrangian method. Spherical aerosol

Fig. 1. Schematic diagrams of simple and converging-diverging micro-channels.
particles with diameters of 0.001-1 $\mu \mathrm{m}$ were injected through simple and converging-diverging two-dimensional micro-channels having hydraulic diameters of $50 \mu \mathrm{~m}$ and lengths of $2500 \mu \mathrm{~m}$. The inlet velocity of the air flow was considered to be $0.006 \mathrm{~m} / \mathrm{s}(R e=0.02)$. Fig. 1 schematically shows the simple and converging-diverging micro-channels. The aerosol particle fraction in the air flow varied with position and time. Gravitational, Brownian, and lifting forces acted on the aerosol particles in each micro-channel.

The gas velocity at the wall was considered to be nonzero because the gas flow in the micro-channel was in a slip regime ($K n=0.001-0.1$). The entrance length was neglected in the microchannel. Therefore, it was assumed that flow in the channels was incompressible and fully developed (Duan \& Muzychka, 2010). The steady-state continuity and Navier-Stokes momentum equations were needed to simulate the flow field. These equations for incompressible flows are (Batchelor, 1967)
$\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}=0$,
$\rho\left(U \frac{\partial U}{\partial x}+V \frac{\partial U}{\partial y}\right)=-\frac{\partial P}{\partial x}+\mu\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}\right)$,
$\rho\left(U \frac{\partial V}{\partial x}+V \frac{\partial V}{\partial y}\right)=-\frac{\partial P}{\partial y}+\mu\left(\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}\right)+\rho g_{y}$.
The boundary condition applied to the micro-channel wall was a first-order slip condition, which was presented by Maxwell as (Karniadakis et al., 2005)
$U_{\mathrm{s}}-U_{\mathrm{w}}=\frac{K n\left(2-\sigma_{\mathrm{v}}\right)}{\sigma_{\mathrm{v}}} \frac{\partial U_{\mathrm{s}}}{\partial n}+\frac{3 K n^{2} \operatorname{Re}(1-\gamma)}{E C} \frac{\partial T}{\partial \mathrm{~s}}$.
The cumulative momentum coefficient (σ_{v}) indicates the fluid-surface interplay. The second term of this equation relates to the fluid creepage on the wall. This term is zero for incompressible fluids under the isothermal condition. The particles were uniformly dispersed at the inlet of the channel $(x=0)$ and entered the channel with the inlet gas velocity. It was assumed that a particle was deposited if its distance from the wall was equal to its radius. The force balance on the aerosols in the Lagrangian method is defined as (Torby, 1984)
$\frac{d U_{\mathrm{P}}}{d t}=g_{\mathrm{y}} \frac{\rho_{\mathrm{P}}-\rho}{\rho}+F_{\mathrm{D}}\left(U-U_{\mathrm{P}}\right)+F_{\mathrm{B}}+F_{\mathrm{L}}$.

https://daneshyari.com/en/article/671906

Download Persian Version:

https://daneshyari.com/article/671906

Daneshyari.com

[^0]: * Corresponding author. Tel.: +98 3412118298.

 E-mail addresses: a.soltani@mail.uk.ac.ir, asoltani2002@yahoo.com (A.S. Goharrizi).

