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h i g h l i g h t s

� Measurement of the complex bulk modulus K⁄ and shear modulus G⁄ of asphalt mixture.
� Time–temperature superposition principle is applicable to complex moduli K⁄ and G⁄.
� The bulk response of asphalt mixtures cannot be considered elastic.
� Strain level effect on bulk and shear response is related to the loading mode.
� Poisson’s ratio master curve described by the Kramers–Kronig relations.
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a b s t r a c t

Mechanistic-empirical pavement design methods typically require the identification of the complex
Young’s modulus and Poisson’s ratio for the characterization of bituminous layers. However, since in
small deformation the frequency-dependent shear and bulk responses of an isotropic body are decoupled,
the complex shear and bulk moduli are generally considered fundamental response functions. The objec-
tive of this study was to perform the experimental characterization of the three-dimensional response of
asphalt mixtures in the linear viscoelastic domain, through the simultaneous measurement of the com-
plex moduli E⁄, K⁄ and G⁄ and the complex Poisson’s ratio m⁄. The testing program consisted of cyclic com-
pression and cyclic tension–compression uniaxial tests on cylindrical specimen, with the measurement of
both axial and transverse strain. In particular, frequency sweeps were carried out at temperatures
between 0, and 40 �C and at axial strain levels between 15 and 60 le. Experimental results highlighted
that, for the tested mixture, the time–temperature superposition principle was applicable to both the
bulk and shear response, and consequently to the axial response. E⁄ and G⁄ showed very similar trends
in terms of both stiffness moduli and loss angle, whereas K⁄ values highlighted smaller frequency depen-
dence. The time–temperature superposition principle was also applicable to m⁄ whose master curves can
be qualitatively described using the local approximation to the Kramers–Kronig relations. Results suggest
that the simultaneous assessment of bulk and shear response may be a useful tool for the performance
characterization of asphalt mixtures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical characterization of asphalt concrete (AC) in
small deformation is based on the linear viscoelastic theory [1]
and on the time–temperature superposition principle [2]. In partic-
ular, mechanistic-empirical pavement design methods also assume
that AC exhibits an isotropic three-dimensional response to traffic
loads and temperature variations and therefore the identification
of Young’s modulus E and Poisson’s ratio m is generally required [3].

Huge research efforts have been devoted to the measurement
and modeling of the one-dimensional linear viscoelastic (LVE)
response of AC, with particular emphasis on the complex Young’s
modulus E⁄, whereas less attention has been paid to the character-
ization of the viscoelastic Poisson’s ratio [1].

Recent studies [4–8] confirmed that, similar to E⁄, the complex
Poisson’s ratio m⁄ of AC mixtures is temperature- and frequency-
dependent. In particular, at high frequencies or low temperatures
the absolute value m0 generally varies from 0.15 to 0.25, whereas
at low frequencies or high temperatures it approaches 0.5 [9,10].
The phase angle dm is also variable, but generally is lower than
10�. Moreover, applying the time–temperature superposition
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principle (TTSP), master curves can be obtained for m⁄, and conse-
quently for both m0 and dm. Typical experimental data show that
master curves of m0 generally have a sigmoidal trend [4,6] charac-
terized by glassy and equilibrium asymptotes, similar to the mas-
ter curves of the absolute value of Young’s modulus E0. However,
results from other studies [5,11,12] apparently indicate that, at
low reduced frequencies the presence of an equilibrium asymptote
is not clear and, instead, the master curves of m0 show a maximum
value. Similarly, Hilton and Yi [13], Lakes and Wineman [14] and
Hilton [15] highlighted that the viscoelastic Poisson’s ratio need
not be monotonic with time.

Starting from 2012, Task Group 3 (TG3) ‘‘Mechanical Testing
of Mixtures” of RILEM Technical Committee 237-SIB ‘‘Testing
and characterization of sustainable innovative bituminous
materials and systems” decided to study the complex Poisson’s
ratio of bituminous mixtures. To this aim a Round Robin Test
(RRT) was organized in order to compare different measurement
techniques and evaluate the possible effect of compaction-
induced mixture anisotropy on the tested specimens. Results of
the RRT showed that m0 was not monotonic and dm showed a
change in sign [16].

Though the Young’s modulus and the Poisson’s ratio are the
most commonly used material parameters in pavement engineer-
ing, their definition and measurement comprises the realization
of simultaneous changes in shape (shear) and size (bulk) [17].
Since in small deformation the frequency-dependent shear and
bulk responses of a LVE isotropic body are neatly separated, the
complex shear modulus G⁄ and the complex bulk modulus K⁄ are
generally considered fundamental response functions [18],
whereas E⁄ and m⁄ may be regarded as derived response functions.

A recent study presented a methodology for the complete (i.e.
bulk and shear) experimental characterization of asphalt mixtures
in the LVE domain, by means of cyclic tension–compression tests
[19]. Results highlighted the importance of measuring the axial/-
transverse or the shear/bulk responses simultaneously, on the
same specimen. For the analyzed test conditions, the absolute
value of K⁄ was found to vary at least by a factor of 10 and the com-
plex moduli E⁄, G⁄ and K⁄ were found to satisfy the interconversion
relations derived from the Hooke’s law.

The objective of the present study was to perform the experi-
mental characterization of the three-dimensional response of
asphalt mixtures in the LVE domain. To this end, cyclic axial tests
were carried out at various strain levels, both in compression and
tension–compression. Results were analyzed to determine the
complex response functions E⁄, K⁄, G⁄ and m⁄ and check their inter-
relations, under the hypothesis of isotropy.

2. Experimental approach

The experimental approach is based on the analysis of cyclic uniaxial tests car-
ried out on cylindrical AC specimens. In such tests, though the stress state is uniax-
ial, the strain field is multi-axial. With the additional hypothesis of isotropy, the
strain field is also axisymmetric and therefore it is characterized by only two
degrees of deformation freedom. As a consequence, the simultaneous measurement
of axial and transverse strain allows the complete three-dimensional viscoelastic
characterization [15,20].

The well-established elastic–viscoelastic correspondence principle (EVCP) [21]
was applied to define complex moduli E⁄, K⁄ and G⁄ and verify their interrelations.
However, the EVCP is not applicable in a straightforward way to Poisson’s ratio
because of the interdependency of the axial and transverse strain [22]. In addition,
its application requires identical initial and boundary conditions [14] and therefore,
when dealing with experimental measurements, the source functions must be mea-
sured simultaneously on the same specimen [23].

A linear and isotropic behavior is normally assumed to model AC for pavement
applications [1,3]. In particular, the linearity limit for the evaluation of E⁄ is
generally lower than 100 � 10�6 mm/mm [24]. Moreover, several researchers
showed that, within this deformation range, the hypothesis of material isotropy
is valid [29,30].

For the present study, tests were performed at strain levels from 15 le to 60 le
in both compression and tension–compression. Since the objective was to evaluate

complex-valued response functions, only the harmonic (i.e. steady-state) part of the
measured stress and strain signals was analyzed.

2.1. Uniaxial tests on LVE material

We restrict our attention to an isotropic cylindrical body (Fig. 1a) subjected to
steady-state harmonic uniaxial stress history (r2 = r3 = 0). Linearity implies that
stress and strain (both axial and transverse) have the same frequency, whereas iso-
tropy implies that the transverse response is the same in all directions. Using com-
plex exponentials, stress and strains (Fig. 1b) are written as follows:

r�
1ðjxÞ ¼ r1;0 exp½jðxt þ d1Þ� ð1aÞ

e�1ðjxÞ ¼ e1;0 expðjxtÞ ð1bÞ

e�3ðjxÞ ¼ e�2ðjxÞ ¼ e2;0 exp½jðxt � d2Þ� ð1cÞ

where j is the imaginary unit, r1,0, e1,0 and e2,0 are the steady-state amplitudes of the
harmonics,x is the angular frequency and d1, d2 are the phase angles, with respect to
the axial strain e1(t), to which a zero phase is customarily assigned.

The sign of the phase angles in Eq. (1) deserves some attention. From a physical
point of view, phase angle is the product of angular frequency and time (d =x t),
which are both positive quantities. In particular, time is added to indicate a lead
and subtracted to indicate a lag [25]. Therefore, the ‘‘ + ” sign of d1 in Eq. (1a) indi-
cates that axial stress leads axial strain, whereas the ‘‘�” sign of d2 in Eq. (1c) indi-
cates that transverse strain lags axial strain. It is emphasized that, while the first is a
viscous effect, and can be derived analytically from the Boltzmann superposition
principle using transform calculus, the second is merely an assumption which is
subjected to experimental verification [17]. According to such an assumption, for
a conventional material (i.e. a material that stretched/compressed in the axial direc-
tion, contracts/expands in the transverse directions), viscous damping implies that
d2 – p > 0, as shown in Fig. 1b.

Uniaxial tests on cylindrical specimens may be regarded as a special case of
standard triaxial tests routinely performed in soil mechanics [20]. Because of
axial symmetry, bulk and shear strain phasors (phase vectors) are calculated as
follows:

e�pðjxÞ ¼ e�1ðjxÞ þ 2e�2ðjxÞ ¼ ep;0 exp½jðxt þ depÞ� ð2Þ

e�qðjxÞ ¼ 2
3
½e�1ðjxÞ � e�2ðjxÞ� ¼ eq;0 exp½jðxt � deqÞ� ð3Þ

where ep,0, eq,0 are the amplitudes and dep, deq are the phase angles for the bulk and
shear strain, respectively. The stress phasors are calculated as follows:

p�ðjxÞ ¼ r�
1ðjxÞ
3

¼ r1;0

3
exp½jðxt þ dEÞ� ¼ p0 exp½jðxt þ dpÞ� ð4Þ

q�ðjxÞ ¼ r�
1ðjxÞ ¼ r1;0 exp½jðxt þ dEÞ� ¼ q0 exp½jðxt þ dqÞ� ð5Þ

where p0 = q0/3 = r1,0/3 are the amplitudes and dp, dq the phase angles for the bulk
and shear stress, respectively, with dp = dq = dE.

2.2. Complex moduli

The complex Young’s modulus E⁄, bulk modulus K⁄ and shear modulus G⁄ are
defined as follows:

E�ðjxÞ ¼ r�
1

e�1
¼ r1;0

e1;0
expðjd1Þ ¼ E0 expðjdEÞ ð6Þ

K�ðjxÞ ¼ p�

e�p
¼ p0

ep;0
exp½jðdE � depÞ� ¼ K0 expðjdKÞ ð7Þ

G�ðjxÞ ¼ q�

3e�q
¼ q0

3eq;0
exp½jðdE þ deqÞ� ¼ G0 expðjdGÞ ð8Þ

where E0, K0 and G0 are the absolute values (norms), and dE, dK and dG are the phase
(or loss) angles.

The EVCP indicates that complex moduli E⁄, K⁄ and G⁄ defined by Eqs. (6)–(8) are
the viscoelastic analogs of the elastic moduli E, K and G [28], therefore absolute val-
ues K0 and G0 may be considered as measure of bulk and shear stiffness, respec-
tively. From Eqs. (6)–(8), it can be observed that, for d2 > p, the loss angle in axial
deformation dE is smaller than the loss angle in shear dG, but larger than the bulk
loss angle dK (Fig. 2c) in accordance with [13,17]. Conversely, if d2 < p, we obtain
dG < dE < dK (Fig. 2d).

The complex exponentials described by Eqs. (1)–(8) can be graphically
represented in the complex plane (Fig. 2). The advantage of such a representation
is that the familiar rules of vector algebra can be readily applied to harmonic
quantities.
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