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h i g h l i g h t s

� Both continuous relaxation and retardation spectra were analytically derived from a complex modulus model.
� A numerical interconversion method was proposed to determine one continuous spectrum from the other.
� High-quality discrete relaxation and retardation spectra were directly determined from the continuous ones.
� A two-step method for determining reduced master curves was suggested.
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a b s t r a c t

This study proposed a new procedure for characterizing linear viscoelastic (LVE) behavior of asphalt con-
crete using the Havriliak–Negami (HN) complex modulus model and corresponding continuous relax-
ation spectrum model. To extend its application to modeling retardation behavior of asphalt concrete,
the continuous retardation spectrum was analytically derived from the HN model by performing an
inverse Fourier–Laplace transform followed by a variable substitution. The two continuous spectra of
the HN model allow the accurate construction of all the modulus and compliance function master curves
in time and frequency domains as well as the efficient determination of the high-quality discrete relax-
ation and retardation spectra. The advantages of the proposed approach over existing ones were demon-
strated through two different complex modulus test data sets. Also, a simple and practical numerical
interconversion method was presented based on the LVE relations between the continuous relaxation
and retardation spectra, which can effectively compute one continuous spectrum from the other for
any characterization model. Further, for practical considerations, a two-step method for determining
reduced master curves with fewer discrete spectrum lines was suggested.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that asphalt concrete behaves as a linear vis-
coelastic (LVE) solid under small strain levels (typically below
150 le) and a broad range of temperature and frequency. As such,
the LVE properties of asphalt concrete can be characterized using
the generalized Maxwell (GM) model and generalized Voigt (GV)
model [1–3]. A principal advantage of the two mechanical models
with different configurations of linear springs and dashpots is that
they mathematically yield the discrete relaxation and retardation
spectra, respectively. In terms of the discrete spectra, the time-
domain modulus and compliance functions, commonly called as

Prony Series representations, can be analytically converted into
the frequency-domain ones and efficiently implemented into
numerical computation of the hereditary integrals in the LVE con-
stitutive equations [3–10].

Numerous approaches have been presented to determine the
discrete spectra from experimental data. Schapery [11] reported
the collocation method in which the spectrum strengths are solved
by using only the data at the preselected collocation points. Cost
and Becker [12] considered the whole set of laboratory data and
developed the multiple data method through a least squares fitting
technique conducted in Laplace-transform domain. These schemes
have been widely used in practice; however, they may cause two
common issues, i.e., spectrum oscillations and negative spectrum
strengths, due to scatters in the data. Spectrum oscillations are
one of the principal sources of the waviness in the master curves
and negative spectrum strengths are physically uninterpretable.
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To address these problems, Parker and Kim [3] designed a power-
law series pre-smoothing method that eliminates the scatters in
the raw data. Emri and Tschoegl [13] and Tschoegl and Emri [14]
proposed a recursive algorithm in light of the graphical character-
istics of the exponential kernel functions. Others focused their
research on resolving the ill-posed (or non-unique) problems dur-
ing the identification of the discrete spectra [15–17]. Still others
established different interconversion methods to indirectly calcu-
late one discrete spectrum from the other [18–20].

In recent years, several attempts have been made to develop
continuous spectrummethods. The continuous spectra can be trea-
ted as the limiting case of the discrete ones, in which the time con-
stants are spaced infinitely closely. The use of the continuous
spectra can effectively avoid the issues occurring in the determina-
tion of the discrete spectra, such as negative spectrum strengths,
wavy master curves and excessive parameters. Levenberg and Shah
[21] and Levenberg [22] used a lognormal distribution function to
model the continuous relaxation spectrum. However, this function
is known to be completely symmetrical on the logarithmic scale,
and therefore is not applicable to all asphalt mixtures. Mun and
Zi [23] applied an inverse Laplace transform to a relaxation modu-
lus representation in time domain, obtaining the high order
approximations of the continuous relaxation spectrum. Obviously,
the two methods only allow for the characterization of the asphalt
concrete relaxation behavior, not providing mathematical forms
for the continuous retardation spectrum. Although, theoretically,
the two continuous spectra can be interconverted into each other,
such interconversion methods can hardly be found in the litera-
ture. Bhattacharjee et al. [24] extracted the continuous relaxation
spectrum from the storage modulus represented by the sigmoidal
model, and determined the corresponding continuous retardation
spectrum by applying the same procedure to the storage compli-
ance. Nevertheless, a major issue concerning this method is that
the LVE relations between the continuous spectra cannot be guar-
anteed as discussed later.

To overcome the aforementioned problems, the present paper
proposes a procedure for characterizing LVE behavior of asphalt
concrete using a complex modulus model. Both continuous relax-
ation and retardation spectra can be analytically derived from this
model. Also, a simple and practical numerical interconversion
method was considered to determine one continuous spectrum
from the other, and vice versa. Further, for practical considerations,
a two-step method for determining reduced master curves was
suggested.

2. Theoretical background

For LVE materials, the one-dimensional constitutive relation-
ship between the stress r and strain e, under isothermal and
non-aging conditions, can be expressed by the Boltzmann superpo-
sition integrals [5]

rðtÞ ¼
Z t

0�
Eðt � fÞde

df
df ð1Þ

eðtÞ ¼
Z t

0�
Dðt � fÞdr

df
df ð2Þ

where t is the time of interest; EðtÞ is the relaxation modulus; DðtÞ is
the creep compliance; and f is an integral variable. Eqs. (1) and (2)
represent two equivalent forms, corresponding to an applied strain
history and an applied stress history, respectively.

The relaxation modulus EðtÞ of LVE solids is commonly repre-
sented by the GM model that is composed of a spring and a series
of Maxwell elements in parallel. The analytical expression can be
given by a Prony series [5]

EðtÞ ¼ Ee þ
XN
i¼1

Eie�t=si ¼ Eg �
XN
i¼1

Eið1� e�t=si Þ ð3Þ

where si and Ei are the ith relaxation time and relaxation strength,
respectively; Ee is the equilibrium modulus, i.e., limt!1EðtÞ; and

Eg ¼ Ee þ
PN

i¼1Ei is the glassy (or instantaneous) modulus, i.e.,
limt!0EðtÞ. The finite number of parameters {si, Ei} (i = 1, . . ., N) in
Eq. (3) constitute the so-called discrete relaxation spectrum, which
represents a distribution of moduli over relaxation times. The accu-
racy of the Prony series representation in characterizing the LVE
properties improves with the increasing number and density of
the relaxation times. When the relaxation times are spaced infi-
nitely closely, one can obtain a continuous relaxation spectrum
HðsÞ. Accordingly, the relaxation modulus EðtÞ is defined in an inte-
gral form as follows [5]

EðtÞ ¼ Ee þ
Z 1

�1
HðsÞe�t=sd ln s

¼ Eg �
Z 1

�1
HðsÞð1� e�t=sÞd ln s ð4Þ

In terms of Carson transform, i.e., s-multiplied Laplace transform,
EðtÞ can be converted into the operational modulus ~EðsÞ in
Laplace-transform domain as shown below

~EðsÞ ¼ s
Z 1

0
EðtÞe�stdt ¼ Ee þ

Z 1

�1
HðsÞ ss

1þ ss
d ln s

¼ Eg �
Z 1

�1
HðsÞ 1

1þ ss
d ln s ð5Þ

where s is the Laplace transform variable. The complex modulus
E�ðxÞ, storage modulus E0ðxÞ and loss modulus E00ðxÞ in frequency
domain can be determined by replacing s with ix, as displayed in
Eqs. (6)–(8)

E�ðxÞ ¼ ~EðsÞjs¼ix ¼ E0ðxÞ þ iE00ðxÞ ð6Þ

E0ðxÞ ¼ Ee þ
Z 1

�1
HðsÞ x2s2

1þx2s2
d ln s

¼ Eg �
Z 1

�1
HðsÞ 1

1þx2s2 d ln s ð7Þ

E00ðxÞ ¼
Z 1

�1
HðsÞ xs

1þx2s2
d ln s ð8Þ

wherex ¼ 2pf is the angular frequency; f is the loading frequency;
and i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

The GV model that consists of a spring and a group of Voigt ele-
ments in series is very convenient to model the creep compliance
DðtÞ of LVE solids. Likewise, the Prony series representation is given
by [5]

DðtÞ ¼ De �
XN
i¼1

Die�t=si ¼ Dg þ
XN
i¼1

ð1� Die�t=si Þ ð9Þ

where si and Di are the ith retardation time and retardation
strength, respectively; De ¼ 1=Ee is the equilibrium compliance,
i.e., limt!1DðtÞ; and Dg ¼ De �

PN
i¼1Di ¼ 1=Eg is the glassy

(or instantaneous) compliance, i.e., limt!0DðtÞ. The parameter set
{si, Di} (i = 1, . . ., N) is commonly termed as the discrete retardation
spectrum, describing a distribution of compliance over retardation
times. Note that often, the retardation time and relaxation time
are denoted by the same symbol s; however, they can be easily
distinguished according to their viscoelastic functions. Similar to
Eqs. (4)–(8), the compliance functions with respect to the continu-
ous retardation spectrum LðsÞ are formulated as follows [5]
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