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a  b  s  t  r  a  c  t

The  inversion  of  the  particle  size  distribution  from  electrical  mobility  measurements  is  analyzed.  Three
different  methods  are adapted  for  a dot-matrix  approach  to  the problem,  especially  for  non-square  or
singular  matrices,  and  applied  to  electrical  mobility  measurements  from  fixed  or  scanning  voltages.  Mul-
tiply  charged  particles,  diffusion  losses,  arbitrary  voltage  steps  and  noise  were  considered,  which  results
in  non-adjoining  and  overlapping  transfer  functions.  The  individual  contribution  of the  transfer  func-
tions  in  each  size  interval  was  geometrically  estimated,  which  requires  only  its  characteristic  mobilities.
The  methodology  is applied  to mobility  measurements  from  particles  charged  with  unipolar  and  bipo-
lar chargers.  However,  the  method  can  be extrapolated  to any  charging  method  with  a defined  charge
distribution,  and  retrieval  of  the  singly  charged  particle  distribution  and  mean  charge  from  a  tandem
differential  mobility  analysis  configuration  was  successfully  demonstrated.

©  2014  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by Elsevier  B.V.  All  rights  reserved.

Introduction

Knowledge of the particle size distribution (PSD) is a funda-
mental requisite to characterize an aerosol population. Differential
mobility analysis (DMA) is the most common principle to measure
submicron PSDs, because it is able to characterize a wide range of
sizes with high resolution in almost real time independently of the
composition of the particles.

However, the PSD cannot be directly measured and must be
inferred from related mobility measurements using inversion tech-
niques. The first attempt at inversion was by Knutson and Whitby
(1975a, 1975b) based on integration of the particle trajectory equa-
tion inside the DMA. The particle size was represented by the size

Abbreviations: CN, condition number; CPC, condensation particle counter; DMA,
differential mobility analyzer; DMPS, differential mobility particle sizer; FWHM,
full width at half maximum; GSD, geometric standard deviation; GCV, generalized
cross-validation; LC, L-Curve; LS, least squares; NNLS, non-negative least squares;
NRMSE, normalized root mean square error; PSD, particle size distribution; SMPS,
scanning mobility particle sizer; SVD, singular value decomposition; TDMA, tandem
differential mobility analysis; TF, transfer function.
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of a sphere with the same mobility Zp as the particle, which is called
the mobility diameter (DZp ):

Zp = qeCc(DZp )

3��DZp

, (1)

where q is the number of elementary charges e on the particle, � is
the dynamic viscosity of the gas flow, and Cc(DZp ) is the Cunning-
ham slip correction factor.

The particle size distribution N(Dp) and particle mobility dis-
tribution M(DZp ) are related through the non-negative Kernel
function Kq(Dp, DZp ) by a Fredholm-type integral equation that also
considers the uncertainty in the measurements ε(DZp ):

M(DZp ) =
∫ Dp max

Dp  min

Kq(Dp, DZp )N(Dp)dDp + ε(DZp ). (2)

When the Kernel is linear with respect to the size distribution,
Eq. (2) can be expressed in matrix form as

Mm ≈ Kq
mnNn + εm. (3)

The equation is approximate because of the error εm ∈ R
m not

only in the data, but also in the approach of the integral (Eq. (2)) to a
set of discrete linear equations. The indices m and n are the number
of discrete measurements and output channels, respectively.

http://dx.doi.org/10.1016/j.partic.2014.08.007
1674-2001/© 2014 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.partic.2014.08.007
dx.doi.org/10.1016/j.partic.2014.08.007
http://www.sciencedirect.com/science/journal/16742001
http://www.elsevier.com/locate/partic
mailto:maida.dro@gmail.com
dx.doi.org/10.1016/j.partic.2014.08.007


Please cite this article in press as: Domat, M.,  et al. Inversion of electrical mobility measurements using bipolar or unipolar chargers for
the arbitrary distribution of channels. Particuology (2015), http://dx.doi.org/10.1016/j.partic.2014.08.007

ARTICLE IN PRESSG Model
PARTIC-738; No. of Pages 10

2  M. Domat et al. / Particuology xxx (2015) xxx–xxx

Nomenclature

A� area of the transfer function
Cc Cunningham slip correction factor
d ratio between diameters
Dgap vertical distance from needle tip to output of ioniz-

ing region in corona
Dp particle diameter
Dpg geometric mean diameter
DZp mobility diameter
e elementary unit of charge (1.602 × 10−19) C
fc fraction of charged particles
H height of the fitting TF triangle
kB Boltzmann’s constant (1.380 × 10−23) J/K
K kernel matrix
L length of DMA
m number of measurement intervals
M particle mobility distribution
n number of output intervals
N particle size distribution
P pressure
Pn penetration efficiency
Pe Peclet number
q number of elementary charges on a particle
Qi ion dilution flow
Qa aerosol flow
Qex excess flow
Qm aerosol monodisperse flow
Qsh sheath flow
Ri, R0 inner and outer radius of the DMA  electrodes
t residence time
V0 voltage applied to the DMA  central rod
Zc centroid mobility of transfer function
Zl, Zu lower and upper boundaries from the mobility TF

intervals
Z∗

l , Z∗
u lower and upper boundaries from the size intervals

Zp electrical particle mobility

Greek letters
ˇ0 relative width of the TF
ε error
� regularization parameter
� dynamic viscosity of gases
�g geometric standard deviation
� scan time
� transfer function (math.)

One of the main drawbacks of this technique is that large par-
ticles with multiple charges can have the same mobility as small
singly charged particles. It is an ill-posed problem in the sense that
a stable solution may  not exist or may  not be unique.

In general, the rank of the control matrix Kq
mn determines the

reliability of finding a solution. For determined systems (m = n),
there may  be a unique solution. If the system is under-determined
(m < n), it has many possible solutions, whereas if m > n it is an
overdetermined system and there is no exact solution (Voutilainen,
2001; Talukdar & Swihart, 2003).

Data inversion technique

The ill-posedness of the problem can be rectified by replac-
ing it with an approximate well-posed problem whose solution is
assumed to be close to the actual PSD. The main methodology to

solve Eq. (3) is based on methods derived from the least squares
(LS):

NLS = arg min ‖K Ninv − M
∥∥ . (4)

In this work, only deterministic techniques were applied, such
as iterative (Alofs & Balakumar, 1982; Bazan & Francisco, 2009;
Collins, Flagan, & Seinfeld, 2002; Crump & Seinfeld, 1981; Fiebig,
Stein, Schröder, Feldpausch, & Petzold, 2005; Hagen & Alofs, 1983;
Pfeifer et al., 2013; Rojas & Steihaug, 2002; Talukdar & Swihart,
2003; Twomey, 1975), regularization (Hansen & O’Leary, 1993;
Talukdar & Swihart, 2003), or linear inversion methods (Hagen &
Alofs, 1983), although recently the statistical techniques have been
improved (Dubey & Dhaniyala, 2013; Voutilainen, 2001).

When the control matrix is strongly ill-conditioned, small errors
in the data can be greatly magnified in the solution, even allowing
negative values for the PSD. One way to avoid negative values is
to use the non-negative least squares (NNLS) algorithm (Lawson &
Hanson, 1974), which is a reformulation of the LS solution in which
a dual vector w = KT (M − KN) forces the solution to be positive:

NN = arg min ‖K Ninv − M
∥∥ ; NN≥0. (5)

The biggest drawback of this method is the convergence: there
is no single factorization and the results can converge to a different
local minimum. Moreover, it is only valid for systems where m ≥ n,
excluding under-determined problems.

The Tikhonov regularization (Willoughby, 1979) is widely used
to solve problems of signal processing such as noise reduction,
image restoration, and data inversion. The method replaces Eq. (4)
by a minimization problem:

N� = N ∈ R
narg min

{
‖K N − M

∥∥2 + �
∥∥N
∥∥ 2
}

, (6)

where � is the regularization parameter,  which is a positive con-
stant that balances the fit and smoothness of the distribution and
is chosen such that N� becomes as close as possible to the noise-free
solution.

The main advantage of the Tikhonov regularization is that diag-
nosis of the problem can be made through the singular value
decomposition (SVD). It achieves a pseudo-inverse of the kernel
matrix, K+, by disaggregating it into two orthogonal matrices,
U ∈ R

m×m and W ∈ R
n×n, and a diagonal matrix formed by non-

negative elements, the singular values,   ̇ ∈ R
m×n:

K+ = W˙+UT =
∑

k

wkuT
k

�k
. (7)

Expressing Eq. (6) in vectorized form, the inverted PSD is

N� = (K+K + �II)−1K+M =
r∑

k=1

	k

uT
k
M

�k
wk, (8)

where 	k are the filter factors or Wiener weights:

	k = �2
k

�2
k

+ �
. (9)

The L-Curve (Hagen & Alofs, 1983; Hansen & O’Leary, 1993;
Lloyd, Taylor, Lawson, & Shields, 1997) is a powerful tool for esti-
mating the optimal regularization parameter. In brief, it consists of
minimizing Eq. (8) for each value of � until the point of maximum
curvature is found (Johnston & Gulrajani, 2000). Another regular-
ization method is based on generalized cross-validation (GCV). It
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