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Abstract

A so-called “split-bottom ring shear cell” leads to wide shear bands under slow, quasi-static deformation. Unlike normal cylindrical Couette
shear cells or rheometers, the bottom plate is split such that the outer part of it can move with the outer wall, while the other part (inner disk)
is immobile. From discrete element simulations (DEM), several continuum fields like the density, velocity, deformation gradient and stress are
computed and evaluated with the goal to formulate objective constitutive relations for the powder flow behavior. From a single simulation, by
applying time- and (local) space-averaging, a non-linear yield surface is obtained with peculiar stress dependence.

The anisotropy is always smaller than the macroscopic friction coefficient. However, the lower bound of anisotropy increases with the strain
rate, approaching the maximum according to a stretched exponential with a specific rate that is consistent with a shear path of about one particle
diameter.
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1. Introduction

Granular matter consists of many independent particles with
peculiar collective flow behavior. Knowing the interaction laws
and inserting those into a discrete element model (DEM), one
can follow the particles by integrating Newton’s equations of
motion (Herrmann, Hovi, & Luding, 1998; Kishino, 2001;
Luding, 2004b, 2008b; Luding, Lätzel, & Herrmann, 2001).

One goal is to derive continuum constitutive relations – as
needed for industrial application. Methods and tools for a so-
called micro–macro transition are applied (Lätzel, Luding, &
Herrmann, 2000; Luding, 2004a, 2005a, 2005b, 2008b; Vermeer
et al., 2001) on small so-called representative volume elements
(RVE). In ring shear cells, both local space averaging (on toroidal
sub-volumes at fixed radial and vertical position) as well as time-
averaging in the (presumed) steady state can be applied. One
obtains already from a single simulation some of the constitutive
relations aimed for. Here, the micro–macro averaging is applied
to a three-dimensional split-bottom ring shear cell as recently
introduced (Fenistein & van Hecke, 2003; Fenistein, van de
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Meent, & van Hecke, 2004). The special property of a split-
bottom ring shear cell is the fact that the shear band is initiated
at the bottom slit and its velocity field is well approximated by an
error-function (Fenistein et al., 2004; Luding, 2004b, 2006) with
a width considerably increasing from bottom to top (free sur-
face). In this study, the frictionless data are examined closer and
the stress- and strain-tensors are studied in their eigensystems
and eigen-directions. A recently proposed evolution equation
for the deviatoric stress (Luding, 2008c) is examined.

2. The soft particle molecular dynamics method

The behavior of granular media can be simulated with the
DEM (Allen & Tildesley, 1987; Lätzel, Luding, Herrmann,
Howell, & Behringer, 2003; Luding, 2008a). As the basic ingre-
dient, a force-displacement relation that governs the interaction
between pairs of particles is defined. Particle positions, velocities
and interaction forces are then sufficient to integrate (explicitly)
Newton’s equations of motion and follow all particles during the
evolution of the system under large strains.

Since the modeling of the internal deformations of the parti-
cles is much too complicated, we relate the normal interaction
force to the overlap as f = kδ, with a stiffness k, if δ> 0. In order to
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Nomenclature

r, φ, z radial [m], angular [rad] and vertical
coordinates [m]

f contact force [N]
k contact stiffness [N/m]
δ contact deformation (overlap) [m]
μ contact friction coefficient
μmacro, ψ macroscopic friction coefficient and

friction angle [rad]
Ro, Rs, Ri outer wall-, slit-, and inner wall-radius [m]
Rc, W center and width of the shearband [m]
fo, Ωo rotation rate [1/s] and angular frequency

[1/s] of the outer wall
υφ, γ̇ angular velocity [m/s] and strain rate [1/s]
I non-dimensional strain rate
lγ shear path [m]
γ̂ eigenvector perpendicular to the shear plane
θ tilt of γ̂ from the horizontal [rad]
σαβ static stress tensor components [N/m2]
σmax, σ0, σmin eigenvalues of the stress tensor [N/m2]
σ̂max, σ̂0, σ̂min eigenvectors of the stress tensor
|τ|, σD shear and deviator stress magnitude [N/m2]
ρ [kg/m3]

account for energy dissipation, the normal degrees of freedom,
i.e., the relative motion of two particles in contact, is subject
to a viscous, velocity dependent damping, for more details see
Luding (1998, 2008a).

3. Split-bottom ring shear cell

In order to save computing time, only a quarter of the ring-
shaped geometry is simulated, using quarter periodic boundary
conditions in angular direction. (In top-view, a particle that
leaves the quarter system downwards, enters at the same radial
position from the right – with according, unchanged veloc-
ity in cylindrical coordinates.) The walls are cylindrical, and
are roughened due to some (about 3% of the total number)
attached particles (Luding, 2004b, 2006, 2008b, 2008c). The
outer cylinder wall with radius Ro = 0.110 m, and part of the
bottom r > Rs = 0.085 m are rotating around the symmetry axis
with the same rotation rate, while the inner wall with radius
Ri = 0.0147 m, and the attached bottom-disk r < Rs remain at rest.

First, the simulation runs for more than 50 s with a rotation
rate fo = 0.01 s−1 of the outer cylinder, with angular velocity
Ωo = 2πfo. For the average only larger times are taken into
account, thus disregarding the transient behavior at the onset of
shear. Two snapshots (with and without friction) are displayed
in Fig. 1.

Translational invariance is assumed in the tangential φ-
direction, and averaging is thus performed over toroidal
volumina over many snapshots in time (typically 40–60), leading
to fields Q(r, z) as function of the radial and vertical positions.
Here, averaging is performed with spacings of �r ≈ 0.0025 m

and �r ≈ 0.0028 m in radial and vertical direction. The choice
of these spacings is arbitrary, since they do not affect the results
discussed below if varied somewhat. However, much smaller
spacing leads to bad statistics and stronger fluctuations while
much larger spacing leads to poor resolution and thus loss of
information.

The averaged data from simulations lead to density, coor-
dination number, and the isotropic fabric, all decreasing with
height and systematically lower in the shear band due to dila-
tancy. From a set of simulations with different filling heights
(data not shown, see Luding, 2004b), just examined from the
top (like in the original experiments), it becomes clear that the
shear band moves inwards with increasing filling height and also
becomes wider. From the front-view, the same information can
be evidenced, see Fig. 1, as well as shear band shape and width
inside the bulk. The shear band moves rapidly inwards deep in
system – close to the slit in the bottom – while its position does
not change much further up.

4. Velocity gradient and stress tensors

From the velocity field gradient, the strain rate
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is obtained, see Fig. 2, as discussed in Depken, van Saarloos,
and van Hecke (2006), see Eq. (7) therein, where the geometri-
cal term, υφ/r in Eq. (1), comes from the cylindrical coordinate
system. From the eigenvalue analysis of the velocity gradient,
one finds that shear planes are well described by the normal unit
vector γ̂ = (cos θ, 0, sin θ), with θ = θ(r, z) = arccos(d1/γ̇), as
predicted in Depken et al. (2006). This unit vector, γ̂ , is the
eigenvector of the vanishing eigenvalue of the velocity gradient
tensor, while the other two are opposite-equal, with their eigen-
vectors in the plane perpendicular to γ̂ and both tilted by 45◦
from the r–z-plane. From the simulation, one can determine the
components of the static stress tensor

σαβ = 1

V

∑
c∈V

fαlβ, (2)

with the contact normal forces fα and branch vector lβ compo-
nents. The sum includes contacts in the vicinity of the averaging
volume, V, weighted according to their vicinity.

Since the σrz component is small (σrz ≈ 0), as compared to
the other averaged non-diagonal stresses, the shear stress can
be defined in analogy to the velocity gradient, as proposed in
Depken et al. (2006):

|τ| =
√
σ2
rφ + σ2

zφ. (3)

A more detailed study of the stress- and strain-eigenvalues
and eigensystems leads to the three eigenvalues σmax, σ0, and
σmin corresponding to the maximum, intermediate and minimum
stress, respectively, with corresponding eigen-directions σ̂max,
σ̂0, and σ̂min. In Fig. 3, the shear stress |τ| and the deviator stress
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