Construction and Building Materials 46 (2013) 211-223

Contents lists available at SciVerse ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

A model for the prediction of the punching resistance of steel fibre reinforced concrete slabs centrically loaded

PIALS

Bernardo N. Moraes Neto^{a,c}, Joaquim A.O. Barros^{b,*}, Guilherme S.S.A. Melo^c

^a University of Minho, Dept. Civil Eng., School of Eng., Guimarães, Portugal

^b University of Minho, ISISE, Dept. Civil Eng., School of Eng., Campus de Azurém, Guimarães, Portugal

^c University of Brasília – UnB, Dept. Civil Eng., Campus of Darcy Ribeiro, Brasília, Brazil

HIGHLIGHTS

• An analytical model is developed for the prediction of the punching load of SFRC slabs.

• A new approach is proposed to simulate the fibre reinforcement contribution.

• A data base of 154 punching tests was built to assess the predictive performance of the model.

• By predicting the experimental results of the DB the accuracy of the model was evidenced.

• The predictive performance was also demonstrated by comparison to the previsions of other models.

ARTICLE INFO

Article history: Received 23 February 2013 Received in revised form 27 April 2013 Accepted 29 April 2013 Available online 26 May 2013

Keywords: Reinforced concrete Flat concrete slab Punching Steel fibre reinforced concrete Analytical models

ABSTRACT

With the aim of contributing for the development of design guidelines capable of predicting with high accuracy the punching resistance of steel fibre reinforced concrete (SFRC) flat slabs, a proposal is presented in the present paper and its predictive performance is assessed by using a database that collects the experimental results from 154 punching tests. The theoretical fundaments of this proposal are based on the critical shear crack theory proposed by Muttoni and his co-authors. The proposal is capable of predicting the load versus rotation of the slab, and attends to the punching failure criterion of the slab. The proposal takes into account the recommendations of the most recent CEB-FIP Model Code for modelling the post-cracking behaviour of SFRC. By simulating the tests composing the collected database, the good predictive performance of the developed proposal is demonstrated.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years the use of steel fibres to increase of the punching resistance, and mainly, to convert brittle punching failure mode into ductile flexural failure mode of reinforced concrete (RC) flat slabs has been explored. In fact, available research [1–3] showed that, if proper mix compositions of steel fibre reinforced concrete (SFRC) are used, steel fibres can be suitable shear reinforcement for RC flat slabs, by improving the load carrying capacity and the energy absorption performance of the column-slab connection. These benefits are derived from the fibre reinforcement mechanisms provided by fibres bridging the micro-cracks that arrest the crack propagation, favouring the occurrence of large number of cracks of small width.

* Corresponding author. E-mail addresses: bnmn@hotmail.com (B.N. Moraes Neto), barros@civil.umin-

ho.pt (J.A.O. Barros), melog@unb.br (G.S.S.A. Melo). 0950-0618/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.conbuildmat.2013.04.034

The resisting tensile stresses supported by the steel fibres in a cracked concrete have also the favourable effect of delaying the yield initiation of longitudinal and transversal conventional steel reinforcement, which contributes to increase the ultimate load carrying capacity of RC structures or to a partial suppression of conventional reinforcements.

By testing prototypes of real [4,5] or smaller scale [6], the use of steel fibres has been investigated as, practically, the unique reinforcement of the flat slabs for residential and commercial buildings. This type of slabs, generally designated by Elevated Steel Fibre Reinforced Concrete (ESFRC) slabs, is reinforced with a steel fibre volume percentage, V_{f} , of about 1%, and it includes a minimum continuity bars, also referred as anti-progressive collapse bars, placed in the bottom of the slab in the alignment of the columns [7]. In spite of the promising results obtained in these tests, reliable design models capable of predicting, with high accuracy, the load carrying capacity, the deformational response and the failure modes possible to occur in ESFRC slabs are not yet available, which is a considerable resistance for a comprehensive acceptation

Nomenclature

A'_s	area of compression reinforcement	r _{cr}	radius of cracked zone
A_s	area of tension reinforcement	r _a	radius of the load introduction at the perimeter
b	width of a isolated slab element	$r_{q,eq}$	radius of the load introduction at the perimeter in an
b_0	critical perimeter for punching shear		equivalent slab of circular geometry
$b_{q,c}$	loaded line for square slabs in circular edge conditions	r _s	radius of circular isolated slab element
$b_{q,q}$	loaded line for square slabs in rectangular edge condi-	$r_{s,eq}$	radius of circular isolated slab element in an equivalent
	tions		slab of circular geometry
С'	distance of the flexural reinforcement to the concrete	r_y	radius of yielded zone
	tensile surface	t	tangential orientation
d	internal arm of the slab	V	shear force
d_0	diameter of the aggregates	V_{exp}	experimental punching shear strength
d_f	diameter of fibre	V_f	fibre volume percentage
d_g	maximum diameter of the	V _{flex}	shear force associated with flexural capacity of the slab
d_{g0}	reference diameter of the aggregates	V_R	nominal punching shear strength
е	edge of the column's cross section	$V_{R,cd}$	design concrete contribution to punching shear strength
Ε	modulus of elasticity of concrete	$V_{R,d}$	design punching shear strength
E_s	modulus of elasticity of reinforcement	$V_{R,fd}$	design fibre contribution to punching shear strength
F'_s	internal compressive force of compressive reinforce-	$V_{R,sd}$	design shear reinforcement contribution to punching
	ment		shear strength
f_c	average compressive strength of concrete in cylinder	V_{the}	theoretical punching shear strength
	specimens	V_u	punching failure load
F _{cr}	internal compressive force of concrete in radial direc-	w	shear crack opening
	tion	w_u	maximum acceptable crack width imposed by design
F_{ct}	internal compressive force of concrete in tangential		conditions
	direction	x	neutral axis of slab
f_{ct}	average tensile strength of concrete (Brazilian test)	Z	axis orthogonal to the slab with origin at the bottom
f_{Fts}	post-cracking strength for serviceability crack opening		surface of the slab
f_{Ftu}	post-cracking strength for ultimate crack opening	β	efficiency factor of the bending reinforcement for stiff-
f_{Ri}	residual flexural tensile strength of fibre reinforced con-		ness calculation
	crete corresponding to CMOD _i	$\Delta \varphi$	angle of a cracked radial segment of slab
F_s	internal compressive force of tensile reinforcement	ϵ'_s	compressive steel reinforcement strain
F _{sr}	internal tensile force of reinforcement in radial direction	ε _c	concrete strain
F _{st}	internal tensile force of reinforcement in tangential	E _{cu}	ultimate strain of concrete in compression zone
	direction	Е _{fu}	ultimate strain of fibre in tensile zone
f_{sy}	yield strength of reinforcement	ε_s	strain of steel reinforcement in tensile zone
h	slab thickness	E _{su}	ultimate strain of steel reinforcement in tensile zone
I ₀	second moment of area of uncracked concrete cross-	$\varepsilon_{t,bot}$	concrete tensile strain at the bottom surface of the slab
	section	$v_{R,}$	nominal shear stress
I_1	second moment of area of cracked concrete cross-sec-	Vc	concrete nominal shear strength
	tion	ho	tensile reinforcement ratio
L	span of slab	ho'	compressive reinforcement ratio
l_f	length of fibre	$\sigma_{f,r}$	post-cracking tensile strength of SFRC in radial direction
m_{cr}	bending moment at crack initiation	$\sigma_{\mathit{f},t}$	post-cracking tensile strength of SFRC in tangential
m_r	radial moment per unit width		direction
m_R	resisting bending moment (plastic bending moment)	$ au_b$	average interracial bond strength of fibre matrix
m_t	tangential moment per unit width	χ1	curvature in stabilized cracking
r	radial orientation	χcr	curvature at cracking
r_0	radius of the critical shear crack	χts	tension stiffening parameter
<i>r</i> ₁	radius of the zone in which cracking is stabilized	χ_y	yielding curvature
r_c	radius of a circular column	ψ	rotation of slab
r _{c,eq}	radius of a circular column in an equivalent slab of cir-		
	cular geometry		

of this structural concept that apparently has several technical and economic advantages. Due to the brittle character of punching failure mode, the existence of a design model capable of predicting correctly the punching resistance and the deformation capacity of SFRC flat slabs is of paramount importance in this context. Some analytical models were proposed for the evaluation of the punching resistance of SFRC slabs, some of them with an eminent empirical nature, but the predictive performance of these models was, in general, limited to the simulation of a relatively small number of tests carried out by the authors [8–11]. In the present work a database collecting 154 punching tests with SFRC slabs was developed to appraise the predictive performance of these models and the one proposed by the authors of the present work. This model is based on the Critical Shear Crack Theory (CSCT) proposed by Muttoni [12], being possible to determine the punching resistance of SFRC slab by intersecting a curve corresponding to the load versus rotation ($V-\psi$) of the column–slab connection, with a curve that defines the failure criterion. This model integrates the contribution of fibre reinforcement mechanisms using the recommendations of the most recent CEB-FIP Model Code 2010 [13]. The present paper Download English Version:

https://daneshyari.com/en/article/6725804

Download Persian Version:

https://daneshyari.com/article/6725804

Daneshyari.com