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a b s t r a c t 

Good models for building thermal behaviour are an important part of developing building energy man- 

agement systems that are capable of reducing energy consumption for space heating through model pre- 

dictive control. A popular approach to modelling the temperature variations of buildings is grey-box mod- 

els based on lumped parameter thermal networks. By creating simplified models and calibrating their 

parameters from measurement data, the resulting model is both accurate and shows good generalisation 

capabilities. Often, parameters of such models are assumed to be a combination of different physical at- 

tributes of the building, hence they have some physical interpretation. In this paper, we investigate the 

dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion 

in the parameter estimates when using randomised initial conditions for a numerical optimisation algo- 

rithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, 

we require the estimated parameters to converge independently of the initial conditions and different 

datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box 

models is demonstrated by validating the models on independent data. This shows that the models are 

usable in a model predictive control system. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

A large part of the world’s energy production is used for heat- 

ing and cooling buildings. The fraction of total energy production 

consumed for utilities in commercial and residential buildings has 

been estimated at 32% by the International Energy Agency (IEA), 

according to [1] . Even though modern building techniques are able 

to reduce the energy used for heating, the renewal rate of build- 

ings is low. Berthou et al. [2] reports renewal rates of 1% per year 

in France. This illustrates the need for good building energy man- 

agement systems (BEMS) in existing buildings as well. 

A model predictive control (MPC) system is an attractive solu- 

tion for use in a BEMS. Models of building thermal behaviour can 

be used to predict the heating and cooling time of a building. In 

a MPC system, a model is used to simulate the system ahead in 

time in order to find a sequence of inputs that controls the system 

to the desired state. In a BEMS, the use of MPC will allow for im- 

proved tracking of the temperature setpoint as well as minimiza- 

tion the energy consumption [2,3] . Predictions of future system in- 
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puts are readily available from weather forecasts, which helps to 

facilitate the use of MPC. 

There have been several publications studying the use of MPC 

for building thermal control. In [4] the authors use both active 

heating and passive solar blinds to control indoor air temperature. 

The paper also gives a thorough introduction to the various MPC 

control methods, such as deterministic and stochastic MPC. In [5] a 

complete building model is developed as a set of layered models 

and used in an MPC. The authors report an energy saving of 63% in 

thermal energy and 29% in HVAC electric energy, for a four-month 

test period. These examples show the potential benefits of using 

MPC for building thermal control. They also show the importance 

of a good prediction model for MPC to be feasible. 

There are a number of different modelling approaches that can 

be used to model the thermal behaviour of a building in an MPC 

system [6] . In Perera et al. [1] , a white-box model based on mass 

and energy balance is derived and calibrated for specific buildings. 

This type of model gives a set of ordinary and/or partial differential 

equations (ODE/PDE) that must be discretised and solved. For com- 

plex models, a large number of parameters are required that can 

be difficult to identify. Another approach to modelling is the use of 

black-box models, which relies solely on measurement data with- 

out any prior knowledge of the building, e.g. ARMAX [7,8] or PLS-R 

[9,10] models. These types of models show high prediction accu- 
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racy, but do not usually allow the application of physical knowl- 

edge to define the model. This approach also produces models 

with low generalisation between different buildings, which makes 

building-to-building comparisons of models difficult [11] . Compar- 

ing the thermal behaviour of buildings can be of interest for the 

purposes of energy consumption classification. 

Another approach to modelling thermal behaviour of build- 

ings is the use of grey-box models [2,3,12,13] . A grey-box model 

is based on a simplified structure derived from a cognitive un- 

derstanding of the physics involved. For the heating of build- 

ings, the model structures may consist of thermal networks [14] , 

i.e. resistor–capacitor circuit equivalent lumped parameter models. 

Rather than deriving the full model as in [1] , the simplified model 

structure is developed from an understanding of the heat trans- 

fers involved in a building, which provides directly a reduced or- 

der model. This process can be referred to as ‘cognitive’ model de- 

velopment [14] . The parameters of such models are lumped pa- 

rameters, i.e. each parameter represents a combination of multi- 

ple physical quantities. Such parameters must be identified from 

measurement data, since they are generally difficult to compute 

based on technical building specifications. A grey-box model there- 

fore uses a combination of the white- and black-box approaches 

[15] . 

It is often assumed that the parameters of such models can 

be assigned physical meaning. The identified parameters are com- 

pared to the physical properties of the building [16,17] . For inter- 

pretation of model parameters to be justified, we suggest that the 

results of the parameter estimation process must show a low de- 

gree of dispersion, e.g. be independent of the initial guess param- 

eter vector for the estimation algorithms. Estimation of parame- 

ters is required to give similar results when using different datasets 

from the same building. 

The estimation of parameters requires the measurement data 

to contain enough dynamic information about the system to accu- 

rately calibrate the model [16,18–20] . Since the subject of this work 

is physical buildings, the experimental design is challenging. The 

outdoor weather conditions acts as a model input, particularly the 

outdoor temperature. Further, it is of interest to estimate the pa- 

rameters under realistic conditions for an occupied building. Hence 

the choice of excitation of the system is limited. Lack of dynamic 

information in the data is known to give problems with practical 

identifiably [19] . 

Since all the parameters of a grey-box model must be esti- 

mated, an additional challenge with calibrating grey-box model 

parameters is over-parameterisation [16] . This is known to give 

non-convergent parameter estimates, since an over-parameterised 

model has undetermined optimal parameters, i.e. infinitely many 

solutions exist. 

While challenges caused by practical identifiably and/or over- 

parameterisation may give reason to question the physical inter- 

pretation of the estimated parameters the models may still be us- 

able in an MPC. In this work, the dispersion of parameter estimates 

under different experimental conditions is investigated using mul- 

tiple sets of experimental data from a real building. Further, cali- 

brated models are validated on independent data to show that they 

are capable of predicating the thermal behaviour of the test build- 

ing, hence rendering them usable in an MPC system. 

2. Model, methods and measurements 

A common approach to parameter estimation is the use of nu- 

merical optimisation [19] , either directly [2] or in the form of a 

maximum likelihood (ML) method [17,21] . When using numerical 

optimisation, it is of interest to investigate the dispersion in the 

estimated optimal parameters under different experimental condi- 

Fig. 1. The R3C2 thermal network model. 

tions. In particular, it is interesting to study if the initial guess for 

the optimisation affects the estimated parameters. 

2.1. Model and parameters 

The model used in this paper is a thermal network model of 

a building [3,14,16,17,20,22] , presented using an electrical circuit 

equivalent model. Thermal resistance is modelled as resistors and 

thermal capacitance as capacitors. The resulting model is a circuit 

where the temperature is used as the driving potential, and the 

flow through the circuit is the heat flow. This approach has been 

used in a number of published papers on modelling building ther- 

mal behaviour, e.g. [3,13] . 

The focus of this paper is estimation of the model parameters. 

For simplicity, only one model is investigated, and the model struc- 

ture is chosen as a minimalistic representation of the experimental 

building from which the calibration data is collected. The model is 

shown in Fig. 1 . This model is similar to the R3C2 model used in 

[2] , but the resistance for ventilation is removed since there is no 

ventilation system installed in the test building. 

The model consists of two states T b and T w 

, which correspond 

to the interior temperature of the building and the wall tempera- 

ture respectively. Wall temperature is measured on the inner sur- 

face of the wall. For each state there is an associated capacitance, 

C b and C w 

. These capacitances represent the building’s ability to 

store thermal energy in the interior and the building envelope, e.g. 

walls, floor and ceiling. The remaining three model components 

are resistances. R b represents the thermal resistance between the 

building interior and the wall. R w 

is the resistance to heat flow 

through the wall, i.e. between the state T w 

and the outside tem- 

perature. The third resistance R g represents the resistance to heat 

flow through the parts of the building envelope that are not in- 

cluded in the state T w 

, such as windows and the door. The driving 

forces of the system are ˙ Q and T ∞ 

, where ˙ Q is a heat flow source, 

e.g. an electric heater. The outside temperature is modelled as a 

potential source T ∞ . 

Deriving equations from a thermal network model can be done 
with, for example, Kirchhoff’s node potential law [23,24] . Each 

state in the circuit, T b and T w 

, is assigned to a circuit node and 

the flow into and out of each node is balanced. The model can be 
written in state-space form as a set of ordinary differential equa- 
tions (ODEs) [18] : 

d T b 
dt 

= −
(

1 

C b R b 
+ 

1 

C b R g 

)
T b + 

(
1 

C b R b 

)
T w + 

(
1 

C b 

)
˙ Q 1 + 

(
1 

C b R g 

)
T ∞ 

(1) 
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