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a b s t r a c t 

This paper presents a hybrid building modelling method with a reduced modelling and calibration effort. 

The method combines a physics-based model, which describes the general behaviour of the system, with 

a machine learning algorithm trained to correct the physics-based model’s systematic errors. To exem- 

plify the method, a highly simplified grey-box model is used as the physics-based part and a Gaussian 

process as the machine learning part. It is shown that the hybrid model improves the temperature and 

energy predictions of the grey-box model while having a lower generalization error than the pure Gaus- 

sian process. Specifically, the hybrid approach achieved a day-ahead zone temperature prediction error 

ca. 0.1 K (RMSE) lower than the grey-box model. As for the energy prediction, the hybrid model obtained 

an error of 3% compared to 8% for the grey-box model. In comparison to the Gaussian process, the hy- 

brid approach achieved better predictions in all cases. The improvements were especially high when the 

models were trained with small datasets: 0.7 K in the temperature prediction and 25 percentage points 

in the energy prediction. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In Europe, buildings are responsible for ca. 40% of total energy 

consumption [1] , making the building sector a prime target for en- 

ergy efficiency measures. Mathematical modelling can contribute 

to more energy-efficient buildings by aiding in design [2] , retrofit 

[3] and control applications [4] , among others. However, the het- 

erogeneous nature of the building stock makes the modelling of 

any individual building a challenging and expensive task. As a di- 

rect consequence of this, building modelling represents a bottle- 

neck that avoids the widespread use of promising technologies, 

such as model predictive control [5–7] . 

With the motivation of reducing the effort required to develop 

building models, this paper presents a hybrid modelling method 

that combines physics-based models with machine learning tech- 

niques. The physics-based model is used to describe the general 

behaviour of the system while the machine learning part learns 

and corrects the physics-based model’s systematic errors. It is 

expected that certain desirable characteristics of both modelling 

methods will be transferred to the hybrid model. Firstly, machine 

learning is attractive due to its low modelling effort: input-output 
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relationships can be learned automatically from the training data 

[8] . Secondly, physics-based models have a relatively low general- 

ization error, showing a robust behaviour even when trained with 

small datasets [9] . To exemplify the method, a highly simplified 

grey-box model is used as the physics-based part and a Gaussian 

process (GP) [10] as the machine learning part. The hypothesis is 

that the hybrid model will improve the grey-box model’s predic- 

tions while having a lower generalization error than pure GP mod- 

els. If the hypothesis holds, the modelling effort will have been re- 

duced by greatly simplifying the grey-box model and the calibra- 

tion effort will be lower by requiring less training data than the 

pure GP. 

The use of GPs to structurally complement physics-based mod- 

els is analyzed by Álvarez et al. [11] , who refer to this combination 

as ‘Latent Force Models’ (LFMs). 

To the best of the authors’ knowledge, LFMs have only been ap- 

plied to building simulation by Ghosh et al. [12] . In their paper, an 

LFM is used to predict the temperature in a building and is shown 

to obtain better results than three different grey-box models. How- 

ever, their LFM model has certain disadvantages. Firstly, the GP is 

trained simultaneously with the grey-box model, causing the pa- 

rameters of the latter to experience an undesirable [12] loss in 

their physical interpretability. Secondly, the GP model uses time as 

its only input. Good results are obtained when evaluating the LFM 

on the training data, but when testing on an independent dataset 
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Nomenclature 

Symbol Description Unit 

c H 2 O Specific heat capacity of water J/(kg K) 

C chc Chilled ceiling heat capacity J/K 

C rad Radiator heat capacity J/K 

C wall Wall heat capacity J/K 

C zone Zone heat capacity J/K 

DAEPE Day ahead energy prediction error –

E th Thermal energy consumption J 

GB Grey-box model –

GP Gaussian process model –

H Hybrid model –

HVAC Heating, ventilation and air-conditioning –

LFM Latent Force Model –

I Identity matrix –

k ( · ) Covariance function –

k Mat ́e rn (·) Matérn covariance function –

K Covariance matrix –

� Characteristic length-scale –

m ( · ) Mean function –

˙ m Heating medium mass flow kg/s 

m day Number of days in a year –

n Number of observations/measurements –

P th Thermal power consumption W 

PI Proportional-integral controller –
˙ Q CC Heat removed from the ventilation air 

through the cooling coils 

W 

˙ Q HC Heat transferred to the ventilation air 

through the heating coils 

W 

˙ Q int Internal heat gains W 

˙ Q chc Heat flow rate between the cooling medium 

and the chilled ceilings 

W 

˙ Q rad Heat flow rate between the heating medium 

and the radiators 

W 

˙ Q vent Net heat flow supplied to the zone by the 

ventilation 

W 

˙ Q zone,chc Zone–chilled ceiling heat flow rate W 

˙ Q zone,rad Zone–radiator heat flow rate W 

˙ Q zone,wall Zone–wall heat flow rate W 

r Euclidean length of u − u ′ –

R wall,amb Wall–ambient thermal resistance K/W 

R zone,chc Zone–chilled ceiling thermal resistance K/W 

R zone,rad Zone–radiator thermal resistance K/W 

R zone,wall Zone–wall thermal resistance K/W 

RMSE Root mean square error of the zone 

temperature prediction 

K 

u Input vector –

U Matrix with input vectors –

V zone Volume of the zone m 

3 

y Output –

y Output vector –

�t Time step s 

εr Relative error –

ϑ amb Ambient temperature °C 
ϑ chc Chilled ceiling temperature °C 
ϑ chc,s Chilled ceiling supply temperature °C 
ϑ chc,r Chilled ceiling return temperature °C 
ϑ rad Radiator temperature °C 
ϑ rad,s Radiator supply temperature °C 
ϑ rad,r Radiator return temperature °C 
ϑ vent,s Supply temperature of the ventilation air °C 
ϑ wall Wall temperature °C 
ϑ zone Zone temperature °C 
μtest The GP’s predicted mean value –

ν Hyperparameter of the Matérn kernel –

σ Standard deviation –

σ 2 
ε Variance of the measurement noise –

this forces the GP to extrapolate and default to its mean function. 

The present paper overcomes these disadvantages by training the 

hybrid model’s parts separately and by extending the GP’s input 

space. 

To the best of the authors’ knowledge, this paper advances the 

state of the art by being the first to apply GPs with explicit basis 

functions [10] to the prediction of air temperature and energy con- 

sumption in buildings. This method is conceptually similar to the 

Table 1 

General system characteristics. 

Building characteristics Value Units 

Floor area 800 m 

2 

Zone height 3.5 m 

Southern window area 60 m 

2 

Northern window area 60 m 

2 

Window U-Value 1.4 W/(m 

2 K) 

Wall U-Value 0.339 W/(m 

2 K) 

Ceiling U-Value 0.233 W/(m 

2 K) 

Passive infiltration rate 0.2 h −1 

HVAC system 

Temperature setpoint 23 °C 
Radiator exponent 1.33 –

Radiator area 36 m 

2 

Chilled ceiling area 302 m 

2 

Ventilation volume flow 3300 m 

3 /h 

Shading irradiation limit 200 W/m 

2 

Shading transmittance 10 % 

Occupancy and internal gains 

Occupied hours 7:0 0–19:0 0 –

Occupied days Monday to Friday –

Number of occupants 40 Persons 

Gains per occupant 120 W 

Office equipment gains 200 W/occ. 

Lighting gains 5 W/m 

2 

LFM model in [12] , inasmuch as physics-based and Gaussian pro- 

cess models are combined to form a hybrid model, but with the 

differences mentioned in the previous paragraph. Other contribu- 

tions include comparing the energy and temperature predictions of 

the grey-box, GP and hybrid models, as well as evaluating the ro- 

bustness of the hybrid and grey-box models when presented with 

incorrect input data. 

2. Modelled building 

The reference building consists of a single-zone office located 

in Stuttgart, Germany. The building has an east–west layout with 

windows on the southern and northern façades. External blinds 

are used to avoid direct solar radiation entering the zone. Radia- 

tors and chilled ceilings are responsible for the main heating and 

cooling in the building, while a ventilation system is installed to 

ensure a minimum air exchange rate [13] . The building, radiators 

and chilled ceilings were modelled using TRNSYS 17 [14] and the 

rest of the HVAC system ( Fig. 1 ) was modelled in Matlab [15] . The 

zone air temperature calculated by the model corresponds to the 

average temperature in the building. In this paper, the reference 

model is treated as the ‘real’ building from where the data used to 

train and test the grey-box, Gaussian process and hybrid models is 

obtained. 

The zone temperature control is done using thermostatic valves 

for the heating and cooling, which are modelled as proportional- 

integral (PI) controllers. The average occupancy schedule follows 

the same pattern as in [9] , but with an average peak occupancy 

of 40 people instead of 25. The actual occupancy differs from the 

average pattern by a white noise term with a standard deviation 

of σ = 2 persons. The shading is automatic and is triggered when 

the solar irradiation on the façade is higher or equal to 200 W/m 

2 

[16] . Further details can be found in Table 1 . 

3. Grey-box model 

In order to reduce the modelling effort, the grey-box model is 

simplified as much as possible. This includes lumping nodes and 

parameters, linearizing heat transfer equations and ignoring certain 

physical phenomena. A brief description of the grey-box model and 

its simplifications is presented next. 
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