Accepted Manuscript

Title: The concept of cascade thermochemical storage based on multimaterial system for household applications

Author: Kokouvi Edem N'Tsoukpoe Nathalie Mazet Pierre

Neveu

PII: S0378-7788(16)30652-1

DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2016.07.047

Reference: ENB 6878

To appear in: *ENB*

Received date: 29-1-2016 Revised date: 18-7-2016 Accepted date: 22-7-2016

Please cite this article as: Kokouvi Edem N'Tsoukpoe, Nathalie Mazet, Pierre Neveu, The concept of cascade thermochemical storage based on multimaterial system for household applications, Energy and Buildings http://dx.doi.org/10.1016/j.enbuild.2016.07.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

<AT>1.1 The concept of cascade thermochemical storage based on multimaterial system for household applications

 $<\!\!AU\!\!>\!\!Kokouvi\;Edem\;N'Tsoukpoe^{a,*}\;\#\#Email\#\#edem.ntsoukpoe@2ie-edu.org\#\#/Email\#\#,\\ \#\#Email\#\#n_christedem@yahoo.fr\#\#/Email\#\#,\;Nathalie\;Mazet^b,\;Pierre\;Neveu^{b,c}\\ <\!\!AU\!\!>$

<AFF>^aLaboratoire Energie Solaire et Economie d'Energie (LESEE), Département Génie Electrique, Energétique et Industriel, Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), 01 BP 594 Ouagadougou 01, Burkina Faso

<AFF>bPROMES-CNRS, Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France

<AFF>cUniversité de Perpignan Via Domitia, 52 Av. Paul Alduy, 66860 Perpignan, France

<PA>Tel.: +22664538850 /Fax: +22650492801.

<ABS-HEAD>Highlights ► The concept of cascade thermochemical storage with multimaterial system is analysed ► The cascade design may help improving the energy storage density and the storage cost ► The cascade design may also help improving the energy and the exergy efficiencies ► Attention should be paid to the cost when selecting the subsequent materials ► Depending on the target, the selected materials would differ for the same application

<ABS-HEAD>Abstract

<ABS-P>Despite significant progresses, thermochemical heat storage technology is still not mature. However, significant improvements may be realised when looking at the application side and the thermodynamics possibilities and constraints of the system. In this paper, the possible advantages of a cascade thermochemical thermal storage are analysed, with an emphasis on long-term solar thermal storage for building applications. It appears that a cascade design may help improving the energy storage density, the energy storage cost, the energy and the exergy efficiencies. An application of the developed analysis is presented by a case study. The objective was to design a seasonal solar thermal energy storage for domestic hot water and heating, based on salt hydrates and with high heat storage density. The given constraints lead to Na₂S·5H₂O and SrBr₂·6H₂O as storage materials. The study shows an increase in the energy storage density of 11% to 21%, depending on the operation strategy, while using a cascade (two materials) instead a classical storage system using a single material. The useful exergy efficiency is also increased from 22% to 27 %. However, the cascading results in an increase in the energy storage cost, due to the high cost of the SrBr₂·6H₂O. This indicates that attention should be paid to the cost when selecting the

Download English Version:

https://daneshyari.com/en/article/6729575

Download Persian Version:

https://daneshyari.com/article/6729575

<u>Daneshyari.com</u>