

Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Thermal decomposition and kinetics of 2,4-dinitroimidazole: An insensitive high explosive

M. Anniyappan*, S.H. Sonawane, S.J. Pawar, A.K. Sikder

High Energy Materials Research Laboratory, Sutarwadi, Pune 21, India

ARTICLE INFO

Article history: Received 10 March 2015 Received in revised form 29 May 2015 Accepted 30 May 2015 Available online 3 June 2015

Keywords: Energetic materials Explosives 2,4-Dinitroimidazole (2,4-DNI) Thermal analysis Mass spectra

ABSTRACT

2,4-Dinitroimidazole (2,4-DNI) is a novel energetic material with much less sensitive and potential for use as a propellant/insensitive munition (IM) formulations. 2,4-DNI possess high thermal stability and less sensitivity as compared to RDX and HMX which are high explosives extensively used at present. This paper reports a detailed thermal study of 2,4-DNI using various instrumental techniques. The activation energy ($E = 205 \pm 15$ kJ/mol) was calculated from thermal decomposition of 2,4-DNI using DSC at different heating rate. The ignition temperature of pure 2,4-DNI was measured and showed at 285 °C. The TGA experiments demonstrate that 2,4-DNI decomposes in three steps with 92% total weight lose. Moreover, the effect of thermal energy on decomposition of 2,4-DNI in presence of polymeric binders like GAP and HTPB were investigated. Further, decomposition mechanisms of 2,4-DNI based on Electron Impact mass spectra analysis were also reported along with its explosive properties.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Development of high performance, insensitive energetic materials containing nitrogen hetero-aromatic core units are of current interest to the researchers worldwide [1]. Recently, some of nitroimidazole derivatives have been examined extensively as a possible candidate to meet various aspects of explosive performances with improved safety characteristics [2]. By simple theory, an aromatic imidazole ring may provide significant stability against an impact and thermal stimulus, while a nitrogen-rich chemical composition may enhance explosive performance [3]. Efforts being made by Lawrence Livermore National Laboratory, working together with the Army at ARDEC and LANL for optimizing the synthesis 1-methyl-2,4,5-trinitroimidazole (MTNI) and its evaluation in explosive and propellants formulations [4]. 2,4-Dinitroimidazole (2,4-DNI, Figs. 1 and 2) is a thermally stable, insensitive high energy material and demonstrated less sensitivity than RDX and HMX, which are high explosives extensively used at present [5,6]. Further, it has about 30% more energetic than TATB, which is an important insensitive explosive with relatively low energy output [7,8]. In addition to this, 2,4-DNI can be made from the inexpensive starting material i.e. imidazole. The 2,4-DNI can be used as an energetic monopropellant in propellant formulation to achieve a higher performance characteristic. Relative estimated specific impulse of 2,4-DNI respective to HMX is about 0.94. Comparison of I_{sp} of 2,4-DNI with HMX confirms that it can be used as monopropellant in composite propellants [9–11]. Utility of 2,4-DNI in the joint LLNL-Air Force Hard Structure Munition, high explosive program is under evolution [12]. However, a limited information on thermal characterization of 2,4-DNI could be found in the open literatures [13,14]. We report herein the detailed thermal studies of 2,4-DNI using various instrumental techniques. In addition to this, the effect of thermal energy on decomposition of 2,4-DNI in presence of polymers using DSC analysis were also reported. Further, a decomposition mechanism of 2,4-DNI was predicted based on results obtained from EI Mass spectral analysis.

2. Experimental

2.1. Materials and methods

GAP used in this study was prepared at HEMRL having molecular weight \sim 2000, density 1.1 g/cc and Tg $-45\,^{\circ}$ C. While, HTPB having molecular weight 2800, density 0.97 g/cc and Tg $-72\,^{\circ}$ C was purchased and used as such. Requisite amounts (1:1) of 2,4-DNI and GAP or HTPB dissolved in methanol and hand mixed in a vacuum chamber at room temperature and the solvent was removed under vacuum then samples were degassed for 1hr prior to testing. FT-IR spectra were recorded on Nicolet FTIR-5700 FTIR spectrophotometer in KBr matrix. 1 H and 13 C NMR spectra were recorded on Varian 300 MHz instrument. Ultraviolet spectra were recorded on GBC Cintra-10e UV-visible spectroscopy instrument

^{*} Corresponding author. Tel.: +91 02025912221.

E-mail address: anniorganic@rediffmail.com (M. Anniyappan).

Fig. 1. 2,4-DNI (2,4-dinitroimidazole).

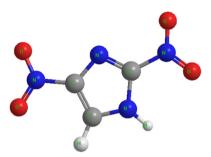


Fig. 2. Energy minimized structure of 2,4-DNI.

in acetonitrile. Thermal analysis was studied on a DSC-7 PerkinElmer instrument under nitrogen atmosphere. Raman spectra were recorded using a Renishaw inVia Raman microspectrometer and the spectra were excited with a Renishaw HPNIR laser (785 nm). Thermogravimetry Analysis (TGA) studies were carried out on a SDTA-851e Mettler Toledo instrument operating at heating rate of $10\,^{\circ}\text{C/min}$ in nitrogen atmosphere. HPLC studies were undertaken on Ultimate-3000 Dionex HPLC system, operating temperature is $25\,^{\circ}\text{C}$ by using reverse phase C-18 column (4 mm \times 250 mm), mobile phase: acetonitrile/water (40:60), flow rate 1 ml/min, injection volume 10 μ l in isocratic mode. Scanning electron microscope (SEM) analysis was carried out using AUANTA 200 ESEM-FEI, (The Netherlands).

2.2. Synthesis of 2,4-DNI

Synthesis of 2,4-DNI was achieved by stepwise nitration of imidazole according to the literature method [3]. The synthesized product always contains 4-nitroimidazole as impurity which could be removed by crystallization method. In our study, the crude product was re-crystallized from hot methanol to give pure crystalline 2,4-dinitroimidazole. The pure 2,4-DNI was subjected

to various instrumental techniques like IR, NMR, UV and elemental analysis. FT-IR (KBr, cm $^{-1}$): 3149 (N-H), 3014 (C-H), 1549 (C=N), 1512 and 1341 (NO $_2$); UV ($\lambda_{\rm max}$, nm): 221, 260, 324 for NH and NO $_2$; 1 H NMR (δ) (DMSO- d_6): 14.4 (s, 1H, NH), 8.5 (s, 1H, C $_5$ -H); 13 C NMR δ (DMSO- d_6): 144 (C $_2$), 143 (C $_4$), 122 (C $_5$); Anal. Calcd for C $_3$ H $_2$ N $_4$ O $_4$: C, 22.79%; H, 1.28%; N, 35.44; Found: C, 22.90%; H, 1.29%; N, 35.23%.

3. Results and discussion

3.1. Structural and purity analysis

IR spectrum of 2,4-DNI showed strong band at 3149 cm⁻¹ which correspond to N—H bond presences in the imidazole ring. Further strong and weak bands appear in the range of 1512–1546 cm⁻¹ and 1328–1354 cm⁻¹ respectively corresponding to nitro groups present in the imidazole ring. The Raman spectrum $(\Delta \nu)$ of 2,4-DNI is shown in Fig. 3. A strong peak at $1435 \,\mathrm{cm}^{-1}$ for the >C=Nbonds, another strong peak at 1273 cm⁻¹ corresponding to bending vibrations of the ring. A peak appeared at 1339 cm⁻¹ which assigned for NO₂ groups present in the molecule. Other peaks for C=N, C-N, C-H and N-O observed at 273, 817, 1014, 1106, 1216, 1399, 1509, 1554 cm⁻¹. The UV spectrum revealed that presence of $n \rightarrow \pi^*$ transition at 324 nm attribute to nitro groups present in the imidazole ring and band at 221 to 260 indicates that presence of NH. Further, ¹H NMR spectra showed chemical shift (δ) at 14.4 ppm corresponding to acidic N-H, and the ring C5-H proton gives a singlet at 8.5 ppm. Similarly, ¹³C NMR spectra showed three peaks for imidazole ring carbons at 144 (C_2), 143 (C_4), 122 (C_5).

Purity of 2,4-DNI was determined by HPLC method using methanol/acetonitrile system as mobile phase and found to be greater than 98%. The SEM image of 2,4-DNI presented in Fig. 4, it reveals that rod/plate shaped layered crystalline morphology with particle size ranging 100 to 400 μm . Indicates that it require a morphological modification before use in the explosive composition for better performance.

3.2. Thermal analysis

The DSC traces of 2,4-dnitroimidazole showed a broad exothermic peak 288 °C ($T_{\rm max}$) with decomposition energy (ΔH) = -1732 J/g. In addition to this, a small endothermic peak was observed at the temperature 228 °C ($T_{\rm max}$, ΔH = 42 J/g), this may be attributed to the phase transition occurred in the 2,4-DNI crystal structure (Fig. 5, heating rate 10 °C/min). This is different from

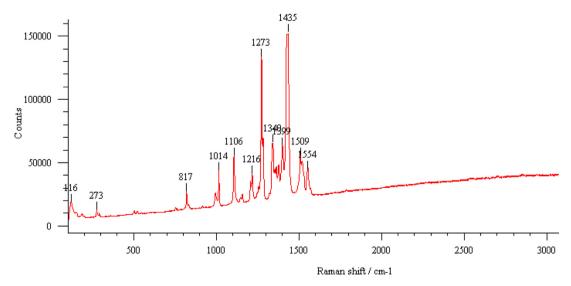


Fig. 3. Raman spectra of crystallized 2,4-DNI.

Download English Version:

https://daneshyari.com/en/article/672991

Download Persian Version:

https://daneshyari.com/article/672991

<u>Daneshyari.com</u>