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a  b  s  t  r  a  c  t

The  paper  introduces  an  approach  to  replicate  building  stock  energy  data  using energy  survey data.
For  demonstration  of  the  approach,  the research  uses  energy  consumption  data  for  office  buildings  in
Chicago from  Commercial  Building  Energy  Consumption  Survey  (CBECS)  2003.  The  replication  starts  from
derivation  of  the  energy  use  distribution  for a building  stock  in  a specific  location  from  the  survey  data.
Then  probabilistic  methods  are  used  to map  building  stock  model  space  to real-world  data  space  reflecting
a  weather  adjustment  of the energy  survey  data.  The  approach  leverages  a linear  surrogate  model  of  the
physics-based  reduced  order  normative  energy  model.  The  normative  building  energy  model  can  rapidly
estimate  the  building  energy  performance  with  respect  to  its  design  and  operational  characteristics.  The
research  investigates  a statistical  procedure  to inversely  estimate  building  parameters  using regression
and  Bayesian  inference  model  based  on  the Markov  Chain  Monte  Carlo  (MCMC)  sampling  techniques.
The  research  serves  a new  paradigm  of the building  stock  aggregation  that can  lead  to an  efficient  energy
model,  which  contributes  the  body  of knowledge  of energy  modeling  beyond  the single  building  scale.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

For a physical system like the building stock of a city, it needs a
scientific research procedure when dealing with observable param-
eters such as building design and operation and to relate them to the
building energy. Due to limitations of onsite measurement, energy
consumption data is inadequate for reproducing all descriptive
input parameters and resulting parameters of the building stock.
There are two levels of data inadequacy preventing us from fully
reproducing the building stock energy profile based on energy sur-
vey data. The first level of the data inadequacy is caused by a scale.
Lack of data points in a city scale makes the composition of build-
ings with different characteristics such as geometry, material, or
principle use not easy. There were efforts for clustering and aggre-
gation of buildings at a city scale [1–3]. In the United States (U.S.),
weighting factors for different building types have been developed
for buildings built after 2003, based on construction data in the
McGraw-Hill’s construction database [4,5]. Tuominen et al. used
prototype building types that represent the whole building stock of
Finland to evaluate energy efficiency measures to analyze energy
savings from retrofits [6]. These efforts provide the possibility of
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using a small portion of prototypical buildings to reflect a large pop-
ulation of buildings. The second level is the building stock energy
data inadequacy across individual cities. Building energy survey
data are only applicable in a few cities. The Commercial Building
Energy Consumption Survey (CBECS) database in U.S. provides basic
statistical information about energy consumption and information
about energy-related characteristics of commercial buildings [7].
However, building energy consumption survey data have limited
amount of buildings at limited locations. The CBECS database does
not provide city information where sampled buildings are located,
but instead provides location information by U.S. census zones,
heating degree days (HDD) and cooling degree days (CDD). To over-
come the data inadequacy of the building energy at a city scale,
the paper introduces an approach that can replicate the building
stock observable parameters through weather data adjustment,
statistical techniques integrating a physics-based energy model-
ing method. Fig. 1 illustrates the research flow of the proposed
approach.

2. Modeling methodology

2.1. Weather adjustment of building energy consumption survey
data

Building stock energy profile with inadequate survey data can
be inferred by extrapolating the energy data of city or region with
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Fig. 1. Research flow of the proposed approach.

known energy data and weather information. This is built upon
the assumption that the distribution of building design and oper-
ational characteristics in a city has no significant difference from
the regional averaged distribution. The extrapolated probability
distribution function (PDF) of the building energy consumption
represents a scenario as “what if we move all buildings from the
survey to the city with an interest”. Given design and operational
characteristics of individual buildings and their energy consump-
tion, the “extrapolated” city is used for further analysis. When
energy consumption survey results are available for a set of build-
ings, numbered as i(i = 1, 2, . . .,  N), energy outputs and inputs of
the dataset can be statistically formulated as:

PIi = f (Xdesign,i, Xoperation,i, Xclimate,i) + εi (1)

where PIi is an energy performance indicator of observation i,
for instance, annual site and primary energy consumption, etc.;
Xdesign,i, Xoperation,i, and Xclimate,i are vectors of design, operation, and
climate parameters of observation i, respectively. f is a statistical
function identical for all buildings in the data set, and εi is the error
term. Given this function, building i can be relocated to another
location to predict the adjusted energy performance indicator.

PIi,adj = f (Xdesign,i, Xoperation,i, Xclimate,adj) + ε′
i (2)

Then, PIi,adj by substituting climate parameters Xclimate,i with
climate parameters from the new location is denoted as Xclimate,adj.

2.2. Generating a surrogate model for a building physical energy
model

Input parameters for a dynamic simulation model are typically
at the scale of hundreds or thousands. Scalability is a big prob-
lem preventing us from using such dynamic simulation models for
large scale building stock analysis. Recent building stock modeling
work conducted by National Renewable Energy Laboratory (NREL)
[9,10] and Pacific Northwest National Laboratory (PNNL) [11] for
office buildings have used EnergyPlus as an underlying engine.
EnergyPlus is an advanced application that conducts a dynamic
simulation to predict the building energy performance widely used
for building energy research [12]. Use of the dynamic simulation
may  achieve deep details, yet requires high computing cost to per-
form simulation tasks. This is especially a bottleneck for tasks such
as model calibration and stochastic inferences. Alternatively, the
normative energy modeling method can be used for this purpose
due to its scalability and transparency [13]. Lee et al. used the nor-
mative energy model for retrofit analysis of existing buildings and
shared systems for large scale energy systems at a campus-scale
[14]. However, a normative building energy model still cannot be

directly expressed as a single explicit formula. Given feasible ranges
of building design parameters, a set of inputs and the output of the
normative model can be expressed as a linear regression model.
Therefore, a linear regression surrogate model is developed to rep-
resent the normative model leveraging large input ranges and large
amount of data samples.

2.3. Solving a linear inverse problem to reconstruct the building
stock

Once a linear regression of the building energy model is iden-
tified, it needs to derive design and operational parameters of
buildings to the replicate the building stock. Different from typi-
cal energy modeling process, this problem is defined as: “knowing
the outputs of a model, how do we derive the inputs?” This type of
problem is defined as an inverse problem. The approach solves a lin-
ear inverse problem to generate distributions of the building energy
model input variables, which can replicate the building stock pri-
mary EUI distribution. This can be expressed as the following model
(vectors and matrices are in bold; scalars in normal font, and vectors
are indicated with a small letter; matrices with capital letter):

y = f (ˇ, X) (3)

where  ̌ is the model parameter vector, X the input variable matrix,
and y the output variable vector. A forward problem is defined as:
Given the parameter matrix ˇ, what are the values of y for X? On
the contrary, an inverse problem is defined as: Having data (X, y),
how to calculate or estimate the parameter vector ˇ? Another form
is that having data (ˇ, y), how to calculate or estimate the variable
matrix X? As a special inverse problem, if the function f is a linear
function so that there is no interaction between elements of x, the
inverse problem is a linear inverse problem. A linear model is typ-
ically written in matrix notation as Ax = b + �, where x a vector of
variables, and � an error vector. A general formulation of a linear
model considering additional equality and inequality constraints
can be expressed as:

⎧⎨
⎩

Inequality constraints : Ax = b + �
Equality constraints : Ex = f

Inequality constraints : Gx ≥ h

(4)

An inverse problem is usually under-determined or over-
determined. In Eq. (4), A is an m × n matrix and x is an n × 1 vector.
If m < n, meaning that there are more unknown variables than
equations, the system is underdetermined and usually has infinite
solutions. Monte Carlo sampling methods can be used to sample
the feasible region of an underdetermined linear problem in a uni-
form way. The term � can then be considered as the uncertainties
in the data. On the contrary, if m > n, meaning that there are more
equations than unknown variables, the system is over-determined
and usually there is no solution for which � = 0. An over-determined
linear model can be solved by minimizing a norm of the error term
� = Ax − b, for example the sum of squares

∑
�2. In this case, the

term � represents a model error term rather than uncertainties in
the data.

The study uses an algorithm proposed by Meersche et al. to
solve the over-determined linear inverse problem [15]. The algo-
rithm contains two steps: (1) eliminate the equality constraints
Ex = f and (2) perform a random walk on the reduced prob-
lem. In the equality elimination step, x elements in the exact
equality Ex = f are linearly transformed to a vector q so that all ele-
ments are linearly independent. This linear transformation merges
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