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a  b  s  t  r  a  c  t

The  forecasting  of  building  electricity  demand  is certain  to  play  a vital  role  in  the  future  power  grid.
Given  the  deployment  of  intermittent  renewable  energy  sources  and  the  ever  increasing  consumption  of
electricity,  the  generation  of  accurate  building-level  electricity  demand  forecasts  will be  valuable  to  both
grid operators  and  building  energy  management  systems.  The  literature  is rich  with  forecasting  models  for
individual  buildings.  However,  an  ongoing  challenge  is  the  development  of a  broadly  applicable  method
for  demand  forecasting  across  geographic  locations,  seasons,  and  use-types.  This paper  addresses  the  need
for  a generalizable  approach  to  electricity  demand  forecasting  through  the  formulation  of  an  ensemble
learning  method  that  performs  model  validation  and  selection  in real time  using  a gating  function.  By
learning  from  electricity  demand  data  streams,  the  method  requires  little  knowledge  of energy  end-
use,  making  it well  suited  for  real deployments.  While  the  ensemble  method  is  capable  of  incorporating
complex  forecasters,  such  as  Artificial  Neural  Networks  or  Seasonal  Autoregressive  Integrated  Moving
Average  models,  this  work  will focus  on employing  simpler  models,  such  as  Ordinary  Least  Squares  and
k-Nearest  Neighbors.  By  applying  our method  to  32  building  electricity  demand  data  sets  (8  commercial
and  24 residential),  we  generate  electricity  demand  forecasts  with  a mean  absolute  percent  error  of  7.5%
and 55.8%  for  commercial  and  residential  buildings,  respectively.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Commercial and residential buildings account for 74.1% of U.S.
electricity consumption, more than either the transportation sector
or the industrial sector (0.2% and 25.7%, respectively) [1]. Maintain-
ing a continuous and instantaneous balance between generation
and load is a fundamental requirement of the electric power sys-
tem [2]. To reliably match supply with demand, the forecasting
of grid-level electricity loads has long been a central part of the
planning and management of electrical utilities [3]. The accuracy
of these forecasts has a strong impact on the reliability and cost
of power system operations. Trends, such as vehicle electrification
and distributed renewable generation, are expected to pose new
challenges for grid operators and may  undermine the accuracy of
load forecasts.

To improve the accuracy of electricity demand forecasts and aid
in the management of power systems, recent attention has been
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placed on short-term building-level electricity demand forecast-
ing using a wide range of models [4,5]. The ability to accurately
and adaptively forecast demand-side loads will play a critical role
in maintaining grid stability and enabling renewables integration.
Additionally, many novel optimal control schemes, under research
umbrellas such as demand response and microgrid management,
require short-term building electricity demand forecasts to aid in
decision making [6].

The supply-side and load-side time series forecasting of elec-
tricity demand has been a topic of research for many decades.
The literature is filled with a variety of well-cited modelling
approaches, each differing in algorithmic complexity, estimation
procedure, and computational cost. Of particular note are the vari-
ants of Artificial Neural Networks (ANN) [3–5,7–10], Support Vector
Regression (SVR) [11–14] and Autoregressive Integrated Moving
Average (ARIMA) models [3,12,13,15–18]. Lesser but nonetheless
noteworthy attention has been given to approaches such as Multi-
ple Linear Regression [3,11,19], Fuzzy Logic [3,20], Decision Trees
[4], and k-Nearest Neighbors (k-NN).

These studies provide a broad catalog of use-cases and demon-
strate the performance of certain forecasting algorithms when
applied to specific building types. In particular, [3,4,10,17] provide
a survey of electricity forecasting methods and a high-level
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comparison of techniques. Hippert et al. [8] provides a detailed
description of ANNs and their application to load forecasting,
including data pre-processing and ANN architectures. Jetcheva et al.
[5] details the development of a seasonal ANN approach and the
advantage over a Seasonal ARIMA (SARIMA) model when applied
to 6 building datasets. Newsham and Birt [18] focuses on the intro-
duction of motion sensor data to improve the accuracy of an ARIMA
model. In [9,11,15,18,20], the authors perform an in-depth analysis
of the power demand patterns of a particular building in order to
customize a forecasting model.

In papers with experimental results, the authors have gener-
ally applied their electricity demand forecasting technique to only
a small number of datasets. Consequently, the literature is rich
with forecasting algorithms customized for individual buildings.
This leads us to the following question: Is it possible to design a
single minimally-customized forecasting algorithm that is widely
applicable across a diversity of building types, enabling scalability?
We pursue this question by proposing a novel ensemble learning
method for electricity demand forecasting.

Specifically, due to unique building characteristics, occupancy
patterns, and individual energy use behaviors, we argue that no sin-
gle model structure is capable of accurately forecasting electricity
demand across all commercial and residential buildings.

For example, some forecasting models may  produce accurate
predictions under certain observable or unobservable conditions,
such as a seasonal trend, a morning routine, or an extended absence.
Other models may  be ideal for buildings with energy use behaviors
that are stable over long periods of time. For buildings with fre-
quent changes in occupancy patterns, models that are trained over
a moving horizon may  yield the highest accuracy. In short, this work
will develop an ensemble learning method that trains and validates
multiple forecasting models before applying a gating method to
select a single model to perform electricity demand forecasting.

In this way, the ensemble method is able to learn from real-
time data and to produce short-term electricity demand forecasts
that are automatically tailored to a particular building and instance
in time. In addition to forecast accuracy, this paper will place an
emphasis on method adaptability and ease of use. While we have
implemented certain forecasting models, the method is intended
to allow the models to be interchangeable.

To demonstrate the use of our ensemble method to produce
short-term forecasts, this paper includes 3 experimental studies:
Single Model Studies, Multiple Model Study, and Residential Study.
For each of these studies, we will make the following assumptions
with respect to the availability of building electricity demand data:

A1. We  have access to hourly historical building electricity demand
at the meter.

A2. We  have access to hourly historical weather data near the
building location.

A3. We  do not have access to submetered electricity demand data
or building operations data, such as occupancy measurements
or mechanical system schedules.

The limited access to input data with which to produce forecasts
is representative of the challenge faced by grid operators. Accord-
ingly, this paper will demonstrate the potential of our ensemble
method to non-invasively forecast total electricity demand using
data-driven methods. Additionally, unlike in [9,11,15,18,20], where
the authors perform an in-depth analysis of the power demand
patterns in order to customize a model to a particular building,
this paper will focus on developing a forecasting approach that is
generally applicable to all buildings without customization.

This paper is organized into five sections: Regression Models,
Single Model Studies, Ensemble Method, Multiple Model Study, and
Residential Study. Section 2, Regression Models, briefly presents

background theory for 5 regression models that will be employed in
this paper. In Section 3, Single Model Studies, we  apply the forecast-
ing models to 8 commercial/university building electricity demand
datasets using batch and moving horizon training approaches.
Section 4, Ensemble Method, presents our method for training and
validating multiple models and for selecting the optimal model
using a gating method. Section 5, Multiple Model Study, applies
our ensemble learning method to 8 commercial/university building
electricity demand datasets and quantifies and qualifies the advan-
tage over a single model approach. Finally, in Section 6, Residential
Study, we apply our ensemble learning method to 24 residential
building electricity demand datasets and summarize the results.
Key conclusions and future research directions are summarized in
Section 7.

2. Regression models

In this paper, we will consider one parametric regression model,
Ordinary (Linear) Least Squares with �2 Regularization (Ridge), and
four nonparametric models, Support Vector Regression with Radial
Basis Function (SVR), Decision Tree Regression (DTree), k-Nearest
Neighbors with uniform weights and binary tree data structure
(k-NN), and Multilayer Perceptron (MLP), a popular type of feed-
forward Artificial Neural Network (ANN). In this section, we will
briefly describe the structure of each regression model.

2.1. Ordinary Least Squares with �2 regularization

Ordinary Least Squares with �2 regularization (Ridge) fits a lin-
ear model with coefficients w ∈ Rn to minimize the residual sum
of squared errors between the observed and predicted responses
while imposing a penalty on the size of coefficients according to
their �2-norm. The linear model of a system with univariate output
is given by

ŷ = w0x0 + w1x1 + · · · + wnxn

=
∑

k

wkxk = wT x
(1)

with variables x ∈ Rn, the model input, ŷ ∈  R, the predicted
response, n, the number of inputs or features in x, and k = 1, . . .,
n.

The linear model is trained on a set of inputs and observed
responses by optimizing the function

minimize
w

∑
i

‖wT xi − yi‖2
2 + �‖w‖2

2 (2)

with variables xi ∈ Rn, the model input for the ith data point, yi ∈
R, the ith observed response, w ∈ Rn, the weighting coefficients,
and i = 1, . . .,  N, where N is the number of data samples and n is
the number of features in xi. Lastly, � is a weighting term for the
regularization penalty.

For a system with a multivariate output ŷ ∈  Rm, we  will treat
the outputs as uncorrelated and define a set of coefficients wj ∈ Rn

for each predicted response ŷj ∈ R for j = 1, . . .,  m.  Thus, the multi-
variate linear model is given by

ŷj = wT
j x, ∀j = 1, . . .,  m (3)

The weights of the multivariate model are determined by opti-
mizing the function:

minimize
w

∑
i

∑
j

‖wT
j xi − yi,j‖2

2 +
∑

j

�‖wj‖2
2 (4)

with variables xi ∈ Rn, the model input, yi ∈ Rm, the observed mul-
tivariate response, wj ∈ Rn, the weighting coefficients of the jth
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