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A B S T R A C T

A key parameter of many transformations when heated at a constant rate is the peak temperature, i.e., the
temperature at which the transformation rate is at its maximum. The most universal approach to
determine the peak temperature for thermally activated transformations is the Kissinger equation. In this
paper, we solve Kissinger equation to deduce the exact dependence of the peak temperature on the
heating rate. This analytical solution is based on the Lambert W-function. In addition, an approximate
solution is derived that is used to infer general properties of thermally activated processes and to obtain a
test to check the validity of Kissinger method.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

In thermally activated and homogeneous transformations, the
rate of change of a substance can be described as a function of the
temperature and its state, and that the system state is a function of
a single parameter: the degree of transformation, a (0 < a <1).
Under this assumption, and supposing that the transformation is
ruled by a single mechanism, the transformation rate is described
by a differential equation where the contribution of the
temperature and a may be factorized [1,2]:

da
dt

¼ f að Þk Tð Þ (1)

where t is time, T is the temperature, k(T) is the rate constant and f
(a) is the conversion function for the particular transformation
mechanism. Besides, in many thermally activated solid state
transformations, k(T) is described by the Arrhenius dependence
[3–6]:

k Tð Þ ¼ Aexp � E
RT

� �
(2)

where A is the pre-exponential term, E is the activation energy and
R is the universal gas constant. When the temperature is raised at a
constant rate, b � dT/dt, Eq. (1) still holds, provided that the
transformation rate does not depend on the thermal history. Thus,
under continuous heating conditions, the explicit dependence on
time of Eq. (1) can be eliminated:

da
dT

¼ 1
b
kðTÞ � f ðaÞ (3)

From Eq. (3) one can easily derive the Kissinger equation [7]
(see Appendix A) that relates the peak temperature, TM, with the
kinetic parameters and heating rate:

ln
b

T2
M

  !
¼ � E

RTM
þ ln �AR

E
f 0ðaMÞ

� �
(4)

where f 0 aMð Þ � df =daja¼aM
and aM is the degree of transformation

at TM.
Eq. (4) has been used to determine the activation energy for a

large variety of transformations [8–15]. Kissinger method relies on
the determination of the peak temperature TM,i from experiments
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carried at different heating rates bi. The activation energy is
obtained from a linear fit of the plot ln bi=T

2
M;i

� �
versus 1/TM,i.

Although Eq. (4) is exact, the Kissinger method is approximate
because it assumes that the second term of the right hand side does
not depend on the heating rate, b. Kissinger originally derived his
equation for a first-order reaction, in this case f0(aM) = �1 and its
kinetic method is exact. For most kinetic models f0(aM) is
approximately constant provided that E/RTM is large enough
[15–20] (see Appendix A). In Refs. [16–18,21,22] the values of aM

and f0(aM) are given, and for many reaction models f0(aM) � �1. For
most kinetic models, the percent error in the calculation of the
activation energy is below 2% if E/RTM > 10 [23] (a review of the
literature reveals that, for most transformations, E/RTM > 10 [24]).
Typically the activation energy is around 1.5 eV (145 kJ/mol); thus,
for peak temperatures around 600 K, E/RTM� 30, and for TM� 1700
K, E/RTM� 10. For smaller values of E/RTM other temperature
dependencies may emerge due to the weak thermal activation and,
therefore, Eqs. (1)–(4) must be applied with caution.

The Kissinger method has received more than four thousand
citations [25]. The reason for this success are the simplicity of the
model, its relative independence of the reaction mechanism
[23,26] and its robustness. This is because the strong temperature
dependence of the rate constant ensures a reliable determination
of the activation energy from Eq. (4). The validity of Eq. (4), and
therefore that of Kissinger method, is not limited by its accuracy
but rather to the ability of Eqs. (1)–(3) to describe the actual
kinetics. Recent papers [10,26–28] reveal that the Kissinger
method is erroneously applied to systems that are not governed
by Eqs. (1)–(3). The log scale involved in the Kissinger plot
smoothes out the kinetic data. Consequently, linear plots are
obtained even though Eqs. (1)–(3) do not describe the actual
kinetics. Thus, validity of Kissinger method cannot be judged from
the goodness of the linear fit. [29].

The Kissinger method fails when multiple mechanisms
are involved [31–34], for heterogeneous systems [35], for
transformations where the activation energy depends on a
(such as structural relaxation [27,36,37]) or for transformations
depending on parameters other than a and T (such as solid–gas
reactions that depend on the local gas pressure [10,16,38]). To deal
with these complex systems, isoconversional methods have
been developed that, in addition and within the framework of
the isoconversional hypothesis [39], are exact or significantly more
accurate [10,11,40–43]

In general, the Kissinger method also fails for heterogeneous
systems. However, in some relevant cases, such as crystallization of
amorphous materials, Eqs. (1)–(3) approximately hold and it
provides a reliable determination of the activation energy
[8,28,44]. Since the Kissinger method assumes a constant
temperature rise, it cannot be directly applied to constant cooling
measurements [26,45]. Similarly, some thermally activated
processes such as glass crystallization or melt crystallization do
not follow an Arrhenius behavior. In these circumstances, the
method may be modified [21,26,46]. In particular, it has been
numerically shown that it provides reliable results [21] for a
Vogel–Fulcher temperature dependence [47] but it fails in the case
of melt crystallization [21,28]. Finally, thermal gradients related to
heat propagation through the sample [48,49] or to the heat
evolved from the sample [50,51], pose difficulties to the correct
determination of the peak temperature.

As far as we know, no exact analytical solution of Eq. (4) for
the peak temperature has been published. Knowledge of the
peak temperature is important for both experimental and
theoretical purposes. Besides having an accurate solution, it is
also useful in reducing the computation time required for
numerical simulations. In this paper, we solve Eq. (4) and we
provide analytical solutions with sufficient accuracy for

experimental, theoretical and numerical purposes. Finally, the
analytical solution is used to disclose some general properties of
thermally activated processes and to develop a test to check the
validity of the Kissinger method.

2. Peak temperature: solution of the Kissinger equation

Eq. (4) can be expressed in terms of the reduced activation
energy xM� E/RTM,

4z2 ¼ x2Me
xM (5)

where z contains all the system parameters:

z � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�EAf 0 aMð Þ

Rb

s
(6)

Our goal is to determine xM as a function of z: xM (z). If we take
the square root of both sides of Eq. (5) we obtain,

z ¼ WðzÞeWðzÞ (7)

where W � 1/2xM. Eq. (7) turns out to be the definition of the
transcendental Lambert W-function [52]. Lambert W-function has
two branches: the principal one, W0, which corresponds to W
(z) > 0, and the negative branch W�1. The solution of the Kissinger
equation is restricted to W0 because xM� E/RTM > 0. W0 is a
single-valued function that monotonically increases with z. Thus,
the peak temperature is given by

E
RTM

¼ xM ¼ 2W0 zð Þ ¼ 2W0
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�EAf 0 aMð Þ

Rb

s0
@

1
A (8)

It is worth recalling that Eq. (8) is exact, no approximation has
been used so far.

2.1. Analytical solution for experimental and theoretical purposes

There are several approximations to the Lambert W-function
[53,54]. As we discussed in the introduction, xM> 10 and typically
xM is around 20 or 30; the related z values are 742, 2.2 � 105 and
4.9 � 107. Thus, we are interested in an asymptotic expansion for
large values of z. In particular, the solution W0 = ln(z/ln(z/ . . . )) can
be used to obtain a sequence of approximate analytical solutions
[53,54],

Wnþ1
0 ¼ ln

z
Wn

0

� �
; W0

0 ¼ lnðzÞ (9)

For xM> 10 (z > 742), the maximum relative errors of W1
0 and W2

0 are
5.6 and 2.1%, respectively. This error is reduced to 1.1 and 0.21%
respectively for xM> 20. In Ref. [24], the first term of this sequence
is also proposed as a solution that takes as an initial term a value of
xM inside the interval of interest.

In Fig.1 we have plotted the exact solution, Eq. (8), for a parameter
range that corresponds to 10 < xM< 40. The nearly linear relation-
ship between xM and ln(z) is noteworthy. To take advantage of this
property, we have approximated the exact solution by its first order
series expansion in ln(z) around a reference peak temperature TM,0

related to a heating rate b0 (see Appendix B),

xM ¼ x0 þ x0
2 þ x0

ln
b0

b
(10)
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