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A B S T R A C T

In this work a new model for diffusion-controlled precipitation reactions is derived, analysed and
tested against a wide range of data. The model incorporates elements of the extended volume
concept and combines this with a new treatment of soft impingement of diffusion fields. The model
derivation involves an integration over iso-concentration regions in the parent phase in the extended
volume, which leads to a single analytical equation describing the relation the fraction transformed,
a, and the extended volume fraction, aext, as: a ¼ fexpð�2aextÞ � 1g=ð2aextÞ þ 1. The model is
compared to a range of new and old data on diffusion-controlled reactions including precipitation
reactions and exsolution reactions, showing a very good performance, outperforming classical and recent
models. The model allows new interpretation of existing data which, for the first time, show a consistent
analysis, in which Avrami constants, n, equal values that are always consistent with transformation
theory.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion-controlled precipitation reactions are important in a
wide variety of commercially important materials. It is important
to have an accurate model for the kinetics of the reaction as heat
treatment can determine a range of properties. Preferably such a
kinetic model should be accurate, transparent, avoid computa-
tionally expensive implementations, and lead to analysis methods
that are widely applicable. The objective of this work is to derive
and test a new model for diffusion-controlled precipitation
reactions that meets these criteria.

Diffusion-controlled precipitation reactions can be thought of
as being the combination of 4 overlapping processes: nucleation,
growth, soft impingement and coarsening. Several attempts at
providing a computationally friendly suitable framework for
predicting the progress of diffusion-controlled reactions incorpo-
rating a treatment of impingement have been published (see e.g.
[1–3]), and some less computationally friendly attempts at models
have been published more recently [4]. The present paper focuses
primarily on the treatment of soft impingement.

One group of existing modelling approaches is based on direct
consideration of the diffusion flux at the interface. For instance, the

numerical method formulated by Kampmann and Wagner [5], as
applied by several authors (e.g. [6–9]), treats the growth of
individual spherical particles following the equation:

dR
dt

¼ c
�ðtÞ�cm
cp�cm D

R
(1)

where R is the radius of a growing particle, D is the diffusion
constant, cp is the solute concentration in the precipitate, cm is the
solute concentration at the precipitate/matrix interface that is
evaluated by the Gibbs–Thompson relationship [10,11],cðtÞ is the
mean concentration of thematrix. A characteristic of this approach
is that the interaction of the diffusional growth of the various
particles is drastically simplified: a spherical geometry of diffusion
field is assumed and interaction is described through a single
parameter, the mean concentration cðtÞ. We can term this as a
mean field approach. Some of the users of KW model have
described this treatment of impingement as ‘a simple response
equation’ [12], i.e. it is an approximation for which the accuracy is
as yet unproven and it has been suggested that the mean field
approach underestimates impingement because it ignores a
geometrical component to the impingement process [13]. The
contribution of a geometrical component has been investigated in
[13,14]. Benefits of the KW approach are that basic capillarity
effects can be included and that, in principle and at some
computational costs, the numerical scheme can be implemented to* Tel.: +44 2380595094.
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model different groups of precipitates and (in principle1)
incorporate coarsening [7,8]. The models described by
Svoboda et al. [15,16] applying the thermodynamic extremal
principle (first described by Onsager [17]) employ a mean field
approach that is equivalent to the KW approach (see [16]).

Other works have adopted the extended volume approach (see
e.g. [18–23]). In this approach the fraction transformed, a, is
defined as the ratio of the amount of product phase that has
formed and the maximum that can form (on completion of the
reaction). Alternatively, we can also define a by the level of
depletion of the parent phase (often called the matrix) through:

a ¼ cðt ¼ 0Þ � cðtÞ
cðt ¼ 0Þ � cm

(2)

(For discussion on definition of a, see Section 4.2). The extended
volume is the imaginary ‘volume’ in which all growing product
phases and diffusion fields expand unimpeded by any of the other
product phases and their diffusion fields. In this approach the
extended volume fraction, aext, is defined as the fraction trans-
formed in this imaginary extended volume, and thus aext(t)
increases without limit to infinity. Ignoring various effects
including capillarity, aext is generally given by (e.g. [2,20]):

aext ¼ ðktÞn
Vo

(3)

where t is the time, k is a factor depending on temperature,
composition and (semi-) equilibrium concentrations in the two
phases, Vo is the reference volume considered, and n is an exponent
(alternately referred to as either the reaction exponent or the
‘Avrami exponent’). In the early stage of the reaction impinge-
ment is negligible and the constants k and Vo describing this
imaginary aext can always be linked to ‘real’ progress of the
reaction by using aext =a. These models then proceed to derive an
equation for the ‘real’ volume transformed through an analysis
that defines the relation between the growth of the extended
volume and the real volume transformed. The best known model
of this type is the classical Johnson–Mehl–Avrami–Kolmogorov
(JMAK) model (after [18,21,24,25]), which is an accurate solution
for hard impingement, i.e. where impingement is exclusively due
to impingement of growing product phases. Although some
authors have used it for diffusion-controlled reactions the JMAK
method is not designed for diffusion-controlled reactions, and will
in general only be valid in the limited range where no
impingement occurs.

The general equation for n is [20,26]:

n ¼ Ndimg þ B (4)

where g is 1 for linear growth or 1/2 for parabolic (diffusion-
controlled) growth, B is 0 in the case of site saturation (no
nucleation during the transformation), or 1 for continuous
nucleation (at constant nucleation rate), Ndim is the dimensionality
of the growth. For diffusion-controlled growth n is thus taken as 1/
2, 1 or 11/2.

In one extended-volume based model an impingement
parameter is introduced, which results in the equation [26–28]:

a ¼ 1� aext

hi
þ 1

� ��hi

(5)

where hi is the impingement parameter. Through adjusting the
impingement parameter this equation can encompass the JMAK
model [18,19,21,24,25] (which is obtained for hi!1), the lesser

known Austin–Rickett [29] equation (which is obtained for hi = 1),
and a good approximation for the site saturated case of the KW
model is obtained for hi = 5 [2].

Further, several authors [30–32] have applied approaches in
which impingement of diffusion fields is approximated through
approximating diffusion profiles (concentration as a function of
the distance to the interface) as linear and subsequently assuming
that the progress can be divided into two stages: one where no
interaction occurs followed by a stage of interaction.

Phase field methods for simulating precipitation (see eg.
[13,33,34]) can reveal many details at the level of single
precipitates, but are computationally expensive to the extend
that simulation of impingement is rarely attempted (see [13,35] for
rare examples of a phase field model with impingement).

As would be expected, all these approaches agree in terms of
the prediction of the early stage of transformation in that they all
predict the total volume of reaction product to grow according to a
power law, Eq. (3). Beyond the initial stage, going into the stage
where diffusion fields around particles start to interact, predictions
of these models start to increasingly diverge.The main aim of the
present paper is to show that we can derive a computationally
efficient kinetic equation that is realistic both in (i) the treatment
of the distribution of nuclei, i.e. by considering stochastically
distributed nuclei, and (ii) a diffusion field around each particle
with concentration in the parent phase at the interface given
by cm.

2. A new soft impingement model

To derive a new model for diffusion-controlled reactions we
start by adopting one of the existing models for nucleation,
proceed to calculate the amount the nucleation and initial growth
of the phases in the extended volume and, as is done in a range of
works [18,26,28], assume that this can be mapped onto Eq. (3), i.e.
the parameters of the growth of the extended volume fraction, k
and n, are obtained from the nucleation and initial growth model.
Initial growth is here defined as the stage at which a is less than
�0.2, we will show below that during this stage impingement is
negligible.

In the presentmodel wewill define the extended volume as the
imaginary volume in which all diffusion caused by the growth of a
single nucleus is unimpeded by the other nuclei. (Note that this is
different from some other models, notably [13].) The present
model focusses on the diffusion fields in the parent phase, and the
fraction transformed is thus obtained from the concentrations in
the parent phase, through Eq. (2). The amount of transformed
phase (the total volume of the growing nuclei) is directly
proportional to this and the absolute values can be obtained from
a mass balance equation.

The newelement of themodel is the treatment of impingement.
In the kinetic equation we will characterise the diffusion field as
follows. We will define the local depletion fraction of the diffusing
species, x, in the parent phase (the phase in which the diffusion
occurs) at position x and time t as:

xðx; tÞ ¼ cðx; tÞ � cm
cðt ¼ 0Þ � cm

(6)

where c(t = 0) is the starting concentration of the diffusing species
in the parent phase. For all locations in the parent phase x is
initially 1 and decreases over time to 0. In the extended volumewe
can now identify the volumes inwhich the depletion of the matrix
has progressed beyond a certain amount, i.e. we can identify V
(xl) =VM2 +VM1(x<xl) as the volume in which the parent phase
M1 with starting concentration c0 has converted to material
M2 and depleted M1 with depletion fraction xl. We can do this for

1 In practice this has proved challenging and generally an additional fittable
parameter representing the interfacial energy during the coarsening stage has to be
introduced (see e.g. [9]).
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