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a  b  s  t  r  a  c  t

In  this  paper,  a convexification  approach  is presented  for  a class  of  non-convex  optimal/model  predictive
control  problems  more  specifically  applied  to building  HVAC  control  problems.  The  original  non-convex
problems  are convexified  using  a convex  envelope  approach.  The  approach  is  tested  on two  case  stud-
ies: a benchmark  building  HVAC  system  control  problem  from  the literature  and  control  of  a  hybrid
ground-coupled  heat  pump  (HybGCHP)  system.  For  the first application,  convexified  model  predictive
control  was  used  and  results  were  compared  with  fuzzy  and  adaptive  control  results.  For the  HybGCHP
system,  convexified  optimal  control  was  applied  and the  results  were  compared  with  dynamic  program-
ming  based  optimal  control.  In the  first  case  superior  performance  was  observed  over the  corresponding
fuzzy  and  adaptive  control  results  from  the literature.  For  the  HybGCHP  system  the  associated  con-
vexified  optimal  control  gave  almost  global  optimal  results  in terms  of  responses  and  cost  criteria.  The
suggested  method  is especially  useful  for optimal  building  HVAC  control/design  problems  which  include
non-convex  bilinear  or  fractional  terms.  Since  a polynomial  expression  can  be recursively  expressed  as
a system  of  bilinear  equations,  the  proposed  method,  in principle,  can  be  applied  to  all  systems  where
polynomial  non-convexities  exist.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the context of energy-efficient buildings HVAC control has
gained increasing attention in recent years. Especially, future wor-
ries about the shortage of fuel sources and the requirement of
reduction in greenhouse gas emission levels necessitate building
HVAC control systems to be more efficient. HVAC devices and
the building itself are often modeled using physical principles of
heat transfer, thermodynamics and fluid mechanics. These models
usually include nonlinearities and non-convexities which pose dif-
ficulties for controller design. Although it is not the aim to list all
nonlinearities and non-convexities encountered in building HVAC
control systems, among them the bilinear and fractional terms are
the most dominant ones. An example of a bilinear term in build-
ing HVAC applications is the mass flow rate times temperature.
The coefficient of performance of a heat pump, which is the ratio
of the thermal power delivered to the building over the electrical
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power used is an example of a fractional expression in building
HVAC applications.

Once the building HVAC control system includes a bilinear or
fractional term, the underlying system is a nonlinear system from
the control point of view and it is a non-convex system from the
optimization point of view. If the controller design is based on
optimization (like optimal or model predictive control), then the
controller design task basically involves solution of a non-convex
optimization problem. It is very hard to solve non-convex control
problems over longer control periods due to a large number of
decision variables and the possibility of divergence. Even in case
of a solution, a global minimum cannot be guaranteed. Existing
solvers cannot handle non-convex optimization problems with a
large number of decision variables. The simplest solution to such a
non-convex control problem is to linearize the model around some
operating point and using linear optimization. However, this leads
to the risk of designing a non-working controller on the real sys-
tem or a working controller with suboptimal results. As a result,
linearization is not desirable and should be avoided whenever alter-
native controller design options are available.

A challenging HVAC control application where bilin-
ear/fractional terms exist is the control of ground-coupled
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Variables Description Unit
COP coefficient of performance [–]
ce electricity price Euro/(kWh)
cg gas price Euro/(kWh)
Ca heat capacity kJ/K
Ht global heat transfer coefficient of the building enve-

lope W/K
J total energy-use cost Euro
k conductivity W/(mK)
Nc control horizon length [–]
Np prediction horizon length [–]
rfg grout region inner radius cm
rgs grout region outer radius cm
t time s
Ṗch electrical power used by chiller W
Ṗgb electrical power used by gas boiler W
Ṗhp electrical power used by heat pump W
Ṗpc electrical power used by passive cooler W
Q̇c cooling load demand W
Q̇ch thermal power extracted from the building through

active cooling W
Q̇ext thermal power extracted from ground W
Q̇gb thermal power supplied to the building by gas boiler

W
Q̇gain internal gains W
Q̇h heating load demand W
Q̇hp thermal power supplied to the building by the heat

pump W
Q̇inj thermal power injected to ground W
Q̇net net thermal power injected to ground W
Q̇pc thermal power extracted from the building through

passive cooling W
T temperature ◦C
˛g diffusivity; exponent m2/s; [–]
�gb gas boiler efficiency [–]

Subscripts
a ambient air
aff affine
c convex
ch chiller
f fluid
fr fractional
g grout
gb gas boiler
hp heat pump
i indoor air; inlet
max  maximum
min  minimum; minimize
p pipe
pc passive cooler
s soil

Abbreviations
DP dynamic programming
GCHP ground-coupled heat pump
HVAC heating, ventilation and air conditioning
HybGCHP hybrid ground-coupled heat pump
NMPC nonlinear model predictive control
OC optimal control
POD proper orthogonal decomposition

heat pumps (GCHP) and hybrid ground-coupled heat pump sys-
tems combined with low-exergy heat emission systems [1–10].
The attractivity of such systems comes from having the potential to
reduce the primary energy use related to space heating and cooling
by 70% compared to conventional heating and cooling systems [11].
For GCHP systems with vertical borehole heat exchangers (BHE),
however, the large investment cost of the borefield represents a
major bottleneck. This explains the trend toward compact, hybrid
GCHP systems which combine smaller borefields with supplemen-
tary heating or cooling devices such as gas-fired boilers and chillers.
Although the design of a compact HybGCHP system is often driven
by cost considerations to limit the drilling cost without compro-
mising thermal comfort in the building, sometimes other reasons
may  also lead to HybGCHP systems, such as limited drilling area
for boreholes, the specific ground characteristics, regulation or too
high imbalance of the thermal load.

De Ridder et al. [12] and Verhelst [5] used mathematical model-
based control methods for HybGCHP systems, which allow global
optimization. However, they are based on some simplifications
and/or some unrealistic assumptions introduced during the con-
troller design. For example, De Ridder et al. [12] used dynamic
programming. Dynamic programming is a powerful method since
it is a closed-loop, global optimal control algorithm. However, the
model used by De Ridder et al. [12] for dynamic programming is
a very simple first-order model for the ground mean temperature.
The chosen control time step for the system is one week, which
is very long since typical control actions for buildings may  require
control time steps in the order of minutes or hours. Moreover, the
realization of the designed controller requires the measurement of
the underground field temperature, for which measurement may
be either difficult or non-accurate. As a result, the approach of De
Ridder et al. [12] involves both some modeling simplifications and a
hard-to-realize implementation. Verhelst [5] applied a linear opti-
mal  control method. The simplification made in this work is that
the coefficients of performance (COP) for heat pump and chiller
were taken to be constant, in contrast to being functions of source
and sink temperatures. COP values were taken to be constant to
avoid a non-convex optimization problem, which cannot be solved
over a horizon of a couple years especially when short control
time steps are considered. Although a mathematical model-based
optimal control was considered, the simplifications of taking the
mentioned COPs as constant values without a formal justification
restricts the work of Verhelst [5]. Moreover, the model used for
control and emulator was the same, which neglects the impact of
model mismatch and therefore limits the generality of the approach
followed.

The objective of this paper is to present and illustrate a con-
vex relaxation method for a class of non-convex optimal control
and non-convex model predictive control problems applied to two
case studies, among which the control of a HybGCHP system to min-
imize the total energy cost is a special case. The convex relaxation
method is based on the use of convex envelopes for bilinear and
fractional terms. The convex envelope of a function is the largest
convex function majorized by that function. Approximation of the
non-convex terms by their convex envelopes will transform the
optimization problem to an approximate problem which is convex
and for which the global minimum can be found, if the problem
is feasible. In convex optimization problems, a local minimum is a
global minimum. Although the calculation of a convex envelope for
a general multi-variable function is non-deterministic polynomial-
time hard, there exist analytical formulas for a bilinear function or a
rational function of two variables. Moreover, it is recursively possi-
ble to represent a polynomial non-convexity as a system of bilinear
equations and hence the proposed convexification method, in prin-
ciple, can be used for all systems where polynomial non-convexities
exist.
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