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A B S T R A C T

Commercial thermogravimetric analyzers (TGA) can precisely measure the evaporation of liquids from an
open pot. Analysis of this data to determine vapour pressure has often been based on the Langmuir
equation for evaporation in a vacuum. These methods are flawed, since they cannot account correctly for
the effects of ambient air. We formulate an improved model for evaporation in a TGA, based on the Stefan
tube. It incorporates these effects explicitly. We demonstrate its validity by determining accurate vapour
pressures for pure liquids, without using a reference sample. Calculated values typically agree with
literature data to within a few per cent, over a range of vapour pressures from 60 Pa to 30 kPa. A weakness
of thermogravimetric determination of vapour pressure has been that its accuracy depends on the end
correction. Our data analysis avoids this problem. Also, the air flow rate and the end effect are shown to
act separately on evaporation. Accurate results depend on correctly accounting for both. Finally, a simple
heat balance is used to account for the effect of evaporative cooling.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Evaporation is a key step in many natural and man-made
processes. Examples include: the fates of organic aerosols in the
atmosphere [1] or oil spills on the sea [2], spin coating of polymers
[3] and the spray drying of flavours [4]. Evaporation is challenging
to measure and model, because mass transfer and heat transfer are
tightly coupled [5].

The thermogravimetric analyzer (TGA) is an attractive basis for
studying evaporation, as the instrument is extremely accurate,
robust and easy to use. Measuring vapour pressure using
evaporation in a TGA has been discussed and implemented many
times; see, for example, references [6–11]. However, the data
analysis has often been based on the Langmuir equation [10,11] for
evaporation in a vacuum. Its use is unsatisfactory, as the effect of
the ambient air is not taken into account explicitly. This point
seems to have been first made by Pieterse and Focke [8]. Later,
Rong et al. [9] came to the same conclusion, independently. The
latter based their data analysis on that of Beverley et al. [12], who
determined vapour pressures using the evaporation of millilitre
samples of liquid from an open cylindrical tube.

Taking a broader perspective, we note that the appropriate
analysis has been available for more than a century: it is that of the

Stefan tube [13], which is an experimental setup corresponding
exactly to that of Beverley et al. [12]. The Stefan tube and TGA have
traditionally had different goals: the TGA has been used to
determine the vapour pressure with given gas phase diffusion
coefficient, whereas the Stefan tube has been used to do the
reverse. However, this difference is arbitrary, since the same theory
underlies the two methods. It shows that only the product of the
vapour pressure and the gas phase diffusion coefficient can be
determined [8,13,14].

2. Theory

Following Rong et al. [9], we base our analysis on that of Beverly
et al. (abbreviated as BCF, here). Their analysis is similar to that
given fifty years ago by Lee and Wilke for the determination of gas
phase diffusion coefficients using the Stefan tube [14].

Fig.1 shows the relevant lengths for evaporation of a liquid from
a cylindrical pot.

The evaporating liquid must diffuse through a length h = i + e,
which varies with the amount of liquid left in the pot. Note that the
end effect, e, may be positive or negative [14], depending on the
configuration and the air flow rate.

Both Pieterse and Focke [8] and Barantoni and Cozzani [6]
ignored the end effect. So, implicitly, they assume that it is
negligible compared to the depth of free space above the liquid, i. In
other words, they assume that i + e = i is a good approximation.
However, Lee and Wilke [14] showed that even in a long tube,
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where i is many centimetres, end corrections can be significant.
Therefore, in a TGA, where i is only a few millimetres, it is essential
to incorporate the end effect into the data treatment. Rong et al. [9]
treated e as an unknown and determined it using a nonlinear fit.
Here we show first how to determine e using a linear fit and second
how to determine the vapour pressure, or diffusion coefficient,
without the need to determine e.

BCF write their key equation for the evaporation rate as:

�dm
dt

¼ MADPz
RT

� 1
h

1 � D
D þ hF=X

� �
(1)

where:
m = mass of sample
M = evaporating molecule’s molecular weight
A = cross sectional area of the pot
D = evaporating molecule's diffusion coefficient in air
P = vapour pressure of the evaporating molecule
R = universal gas constant
T = absolute temperature
h = actual diffusion length, see Fig. 1
F = volumetric flow rate of air at the mouth of the pot
X = area through which air flow occurs above the pot
z = correction factor for the enhanced evaporation rate at high

vapour pressures, due to Stefan flow.
The correction factor is given by:

z ¼ Patm

P
ln

1
1 � P=Patmð Þ

� �
(2)

with Patm = atmospheric pressure. At a relative vapour pressure of
0.1 (�10 kPa under ambient conditions), the correction increases
the evaporation rate by about 5%, whereas at a relative vapour
pressure of 0.3 the increase is 19%. When the vapour pressure is
known to be low, it is reasonable to neglect this correction.
However, in a TGA quite high vapour pressures are easily attained,
so it is better to include the correction in the data analysis, as a
matter of course.

BCF did not discuss how to use the z-correction to determine
the vapour pressure. In Eq. (2),z is calculated from the vapour
pressure, whereas the reverse process is needed if the vapour
pressure is the unknown. Further, the vapour pressure, P, cannot be
determined separately from z. Only their product, the apparent
vapour pressure, P = Pz, can be computed. We want to calculate the
true vapour pressure, P, from the measured P. Call the required
correction factor z. We calculate it by fitting a power law series to
the correction factor in Eq. (2) as a function of the apparent vapour
pressure:

P ¼ P0z0 ¼ P0 1 � 0:5P0 þ 0:166P02 � 0:037P03
� �

(3)

This equation is accurate to within 0.1% over the range of vapour
pressures studied here. We use it in our standard measurement
protocol, described below. We assume that the atmospheric

pressure is exactly one atmosphere. For measurements where the
correction is significant, accuracy might be further improved by
using the true barometric pressure at the time of the experiment.

The last term in the BCF equation accounts for the effect of the
air flow over the mouth of the pot on the evaporation rate. We
name this factor Q. It is given by:

Q ¼ 1 � D
D þ hF=X

� �
(4)

Q expresses how far the vapour in the air next to the sample is from
equilibrium with the evaporating liquid. Two limits exist:

& When the air flow rate, F, is very low, then Q is close to zero, so
the rate of evaporation is very low. This result is intuitive: when
there is no flow, the air at the mouth of the pot is saturated in
vapour, in equilibrium with the gas just above the liquid surface,
so there is zero net evaporation.

& When the air flow rate is very high, Q is close to one. In this limit,
the evaporation occurs as though the vapour at the mouth of the
tube was in contact with vapour-free air.

In summary:

& When Q is zero, the sample is at equilibrium with the vapour
above it and the net evaporation rate is zero.

& When Q is one, the sample is as far from equilibrium as possible
and the evaporation rate is maximal.

We now rewrite Eq. (4) in a clearer form, using the appropriate
dimensionless group. A Peclet number, Pe, expresses the balance
between the effects of diffusion and convection (flow). It is given
by:

Pe ¼ vl
D

(5)

Where v is a velocity, l is a characteristic length and D is the
evaporating molecule’s gas phase diffusion coefficient. Rewriting
Eq. (4) in terms of the Peclet number:

Q ¼ 1 � D
D þ hF=X

� �
¼ Pe

Pe þ 1
(6)

Fig. 2 shows how Q varies with the Peclet number.
Thus, the flow regimes reflect our remarks above and determine

the two limits:

& When the Peclet number is much greater than one, i.e. when
convection dominates, Q is one, so no correction is required.
This regime occurs at high air flow rate.

e - end effect

i - idea l diffusion l engthl - po t depth
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l* - effective po t dep th

Fig. 1. Relevant lengths during evaporation of a liquid from a pot.

Fig. 2. Influence of the Peclet number on Q, the correction factor for the effect of air
flow rate on the rate of evaporation.
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