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a  b  s  t  r  a  c  t

We  present  a multiobjective  optimization  framework  to  evaluate  the effects  of  comfort  relaxation  on
the  energy  demands  of buildings.  This work  is motivated  by recent  interest  in  understanding  demand
elasticity  available  for  real-time  electricity  market  operations  and  demand  response  events.  We  ana-
lyze the  flexibility  provided  by  an economics-based  control  architecture  that directly  minimizes  total
energy  and by  a traditional  tracking  control  system  that  minimizes  deviations  from  reference  temper-
ature  and  relative  humidity  set-points.  Our  study  provides  the  following  insights:  (i)  using percentage
mean  vote  (PMV)  and  predicted  percentage  dissatisfied  (PPD)  constraints  within  an  economics-based
system  consistently  gives  the  most  flexibility  as  comfort  is  relaxed,  (ii)  using  PMV  and  PPD  penalization
objectives  results  in  high  comfort  volatility,  (iii)  using  temperature  and relative  humidity  bounds  severely
overestimates  flexibility,  and  (iv)  tracking  control  offers limited  flexibility  even  if used  with  optimal
set-back  conditions.  We  present  a  strategy  to approximate  nonlinear  comfort  regions  using  linear  poly-
hedral regions,  and  we  demonstrate  that  this  reduces  the computational  complexity  of  optimal  control
formulations.

© 2014  Published  by  Elsevier  B.V.

1. Introduction

Commercial buildings are valuable assets to power grid opera-
tors because they can enable demand elasticity [1]. Such flexibility
is necessary to accommodate intermittent renewable power at
a large scale and to avoid the construction of new generation
plants. Demand flexibility can be achieved in buildings by shif-
ting the demand profile in time and by relaxing comfort conditions
to shed demand. Assessing the economic benefits that comfort
relaxation can bring is nontrivial because system flexibility is a
function of many factors such as the building design, real-time
weather conditions, control architecture, and occupant acceptance
[2,3].

The heating, ventilation, and air conditioning (HVAC) system
of a building comprises a large number of equipment units and
material and energy resources that are monitored and coordi-
nated in real time by a building management or control system
(BMS). Thermal comfort and air quality conditions need to be
enforced as occupancy levels, ambient conditions, and energy
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prices change. Two  main control architectures are used in BMS
systems. The traditional architecture (still dominating industry)
determines set-points for equipment units such as delivery tem-
peratures and economizer positions (recycle rates) as well as
set-points for internal conditions such as zone temperatures, rela-
tive humidity, and pressure. Such set-points usually are tuned by
experienced operators or by operational rules embedded in the
BMS system. The set-points are then tracked by low-level, single-
loop controllers such as thermostats. A key question that arises
under this architecture is how to properly predict the amount
of demand that the system will use for a given combination of
set-points. This is particularly difficult because of the complex
feedbacks and physical interactions that exist between equipment
units and controllers. Limited knowledge of these interactions
introduces a disconnect between global economic performance
(e.g., total energy demand) and low-level control performance
(e.g., set-point tracking) and can result in severe inefficiencies.
This disconnect has been widely studied in the chemical industry
[4–6].

Because of the inefficiencies of traditional control architec-
tures, the building automation industry has recently shifted its
interest to model-based management systems (also known as
predictive control systems) [7–11]. These supervisory control
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architectures use dynamic models to predict the interactions
between global HVAC variables and local zone conditions. In addi-
tion, they can directly optimize economic objective functions of
different forms [12]. Consequently, these systems are also referred
to as economics-based control systems [35]. All these features allow
these advanced systems to predict and trade off energy (or cost)
and comfort by manipulating multiple building variables simulta-
neously.

The vast majority of the building industry uses neither comfort
models nor occupant feedback routinely in operations. Conse-
quently and, contrary to what is normally believed, most buildings
operate under poor comfort conditions [13]. In addition, and to the
best of our knowledge, only limited insights are available in the
literature on the energy flexibility provided by different control
systems as comfort conditions are relaxed. One can find many con-
trol formulations reported for which economic and energy savings
potentials are evaluated. We  refer the reader to the studies reported
in [7–12,14–17] and the comprehensive review [18]. None of these
studies evaluates energy flexibility and control system behavior
under relaxed comfort conditions.

The poor comfort performance of legacy control architectures
results in resistance by occupants and building owners to con-
sider emerging automation technologies. In addition, the limited
understanding of the trade-offs between economic performance
and comfort makes it difficult to fully appreciate the economic
value of new technologies over prevailing ones and thus can
makes it difficult to commercialize them. We  believe that per-
forming more studies to evaluate these trade-offs is necessary to
accelerate the deployment of new technologies. This, in turn, is
essential to enabling demand response and elasticity at a large scale
[3,19].

Several multiobjective optimization studies for buildings are
available in the literature. In [20,21] control studies are presented
on the competing effects of air quality and energy consumption
to demonstrate that significant energy reductions on energy use
are possible with small relaxations of air quality conditions. In [22]
the authors analyze the benefits of using multiobjective optimiza-
tion in energy retrofit tasks. None of these works analyze trade-offs
between energy use and thermal comfort.

In this work, we present a multiobjective optimization frame-
work to evaluate the impact of comfort relaxation on energy
demands. We  compare the flexibility of different economics-based
and traditional control architectures reported in the literature
and used in practice. To perform our studies, we  use a physical
model of a single-zone building conditioned by an air-handling
unit (AHU), and we incorporate a detailed PMV/PPD thermal com-
fort model. We  emphasize that the intent of the multiobjective
framework presented is not to obtain absolute numbers on the
impact of comfort relaxation on demand flexibility. Such a study
would require the consideration of many factors such as climate,
building and HVAC design, and operational conditions. Instead, the
intent of our study is to provide insights into the types of biased
comfort perceptions and system volatility that can arise if ineffi-
cient control architectures and inappropriate comfort metrics are
used in the control formulation. In addition, we seek to highlight
the advantages that a multiobjective setting provides for ana-
lyzing and quantifying the benefits of economics-based control
technologies.

The paper is structured as follows. In Section 2 we describe the
dynamic model of the HVAC system and the thermal comfort model
used in the optimal control formulations. In Section 3 we  present
the multiobjective framework used to analyze the behavior of dif-
ferent control formulations and comfort relaxation strategies. A
numerical study is presented in Section 4, and computational issues
are discussed in Section 5. Conclusions and future work are dis-
cussed in Section 6.

2. Dynamic model of HVAC system

The building model considered in this work was  presented in
[23]. We use the thermal comfort model described in the ASHRAE
standard 55-2004 [24]. The building model seeks to capture the
effect of different global control variables on energy demand
and local zone conditions. In particular, the model captures the
dynamics of the zone CO2 concentration, humidity, pressure, and
temperature as well as the behavior of the AHU and the recycle tem-
peratures, flows, and concentrations. We  only describe the main
variables of interest in the narrative. The full model notation and
parameters are presented in Appendix A.

2.1. Material balances

The total mass balance in the building zone is given by

dm(�)
d�

= � · (qin(�) − qout(�)) (1)

where � denotes time and qin(·), qout(·) are inlet and outlet zone
flows, respectively. The individual component dynamic mass bal-
ances are described by

V · dCi(�)
d�

= qin(�) · Cin
i (�) − qout(�) · Ci(�) + n(�) · ntot · Gi,

i � {CO2, H2O}. (2)

The occupancy signal of the space is given by n(�), which takes
a value of 1 if the space is occupied and a value of zero if it is unoc-
cupied at a given time �. The total number of occupants during
occupied times is ntot.

If we assume air with constant density and heat capacity the
mass balance in the recycle is

qout(�) + qamb(�) = qex(�) + qm(�) (3a)

Ci(�) · qout(�) + Camb
i (�) · qamb(�) = Ci(�) · qex(�) + Cm

i (�) · qm(�),

i�{CO2, H2O}. (3b)

The mass balances in the AHU are given by,

qin(�) = qm(�) (4a)

mrm
i (�) = qin(�) · Cin

i − qm(�) · Cm
i (�). (4b)

The mass removal rates in the AHU are denoted as mrm
i

. We  con-
sider mrm

CO2
= 0 because this component is not removed in the AHU

(only moisture is removed or added). The relationship between the
zone pressure, mass, and temperature is given by the ideal gas law,

P(�) = m(�)  · R · T(�)
M · V

. (5)

The zone relative humidity is given by

RH(�) = 100 · CH2O(�)

Csat
H2O(�)

, (6)

where Csat
H2O(�) is the saturation density (concentration) and is com-

puted from Antoine’s equation [25],

log10(Csat
H2O(�)) = 8.07131 − 1730.63

T(�) − 39.73
.  (7)

The concentration of CO2 in parts per million (ppm) is computed
from

ppmVCO2
(�) = 1000 · CCO2 (�) · R · T(�)

MCO2 · P(�)
. (8)
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