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a  b  s  t r  a  c  t

Determination  of appropriate  reaction  model(s)  in  solid  state  reactions  has  been confronting  with  serious
discrepancies  over  the decades.  The  dilemma  in  the  choice  of reaction  models  originates  from  the  use of
facile  methods  to handle  the  complicated  multi-step  kinetics.  In  order  to minimize  these  discrepancies,
an  advanced  reaction  model  determination  methodology  is put  forward  which  deals  with  variable  energy
of activation  concept.  This  methodology  is  expected  to  fairly  simulate  single  step  as  well  as  multi-step
reaction  kinetics.  The  fresh  expressions  for the  well  known  reaction  models  under  this  methodology
are  derived  and  their  validity  conditions  are  discussed.  The  methods  for  determining  pre-exponential
factor(s)  in  single  step  and multi-step  processes  are  also  reviewed.  The  proposed  methodology  is experi-
mentally  verified  by  taking  an  experimental  example  of  non-isothermal  curing  kinetics  of the  polyepoxy
formation  (by  the  reaction  between  DGEBA  and  an  aliphatic  diamine)  under  constant  as well  as  variable
energies  of activation.  The  obtained  results  are  compared  and effectively  interpreted.  The  precautions
while  using  the  said  methodology  and  its prospective  applications  are  also discussed.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A thermally stimulated process is one in which the system
has to overcome a potential energy barrier in order to shift itself
toward forward. The energy distribution along the relevant coor-
dinates in such a system is known to be governed by Boltzmann
statistics. If the processes occurring in solid state are taken into
consideration, several prominent physical phenomena and chemi-
cal reactions fall in this category [1]. The kinetic modeling of these
thermally activated phenomena/reactions simulates their reaction
rates by parameterizing generally the two variables, i.e., degree of
conversion ‘˛’ and temperature ‘T’, by using the kinetic triplets
which in turn, could probe inside those phenomena/processes.
In case of solid state processes, this task is complicated as even
an apparently simple process which is dealt macroscopically,
may  consist of a number of complex processes occurring simul-
taneously (parallel/consecutive or both) [1–3]. Unfortunately, to
kinetically interpret these kinds of complicated processes, some

∗ Corresponding author. Tel.: +212 537 77 54 40; fax: +212 537 77 54 40.
E-mail addresses: maaroufi@fsr.ac.ma, akarimmaaroufi@gmail.com

(A.-K. Maaroufi).

oversimplified methods are available in thermal analysis which can
just partially fulfill the challenges of this field, regarding the promi-
nent complexity of these processes. This statement is in accordance
with the results obtained by ICTAC Kinetic Project and the demand
to put critical emphasis on the development of new and advanced
techniques by ICTAC Kinetic Committee [4–9].

Indeed, isoconversional methods are capable to provide some
clues about the complexity of processes in terms of the variation
in their energies of activation with the degree of conversion (also
called E–  ̨ dependency). These estimations could be useful [10,11];
yet, the complete description of the process inevitably requires the
determination of explicit reaction model for the process. It is a
shortcoming that the well known reaction model determination
methods which are envisaged reliable in this field are based upon
either the single choice of activation energy (effective energy), the
use of approximations or they focus on kinetic compensation prin-
ciple whose origin is questionable [12–16]. Therefore, an attempt
has been made to develop an advanced reaction model determi-
nation methodology based upon the concept of variable energy of
activation. This approach may  not only be helpful to determine the
true pictures of reaction models in case of complex solid state pro-
cesses but also it could provide basis to propose a number of new
and relatively more elaborated reaction models.
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2. Theoretical basis of solid state kinetics

The extent of solid state reactions is effectively described by a
term degree of conversion ‘˛’ and is defined as following:

 ̨ = m0 − mt

m0 − m∞
(1)

where ‘m0’ is the initial mass of reactant, ‘mt’ is its mass at certain
time during the reaction and ‘m∞’ is its mass at the end of reaction.
For these reactions, the reaction rate d˛/dt being the function of ‘˛’
can be described as

d˛

dt
= kf (˛) (2)

Eq. (2) is the basic kinetic equation of solid state mass loss reac-
tions [1]. When isothermal/non-isothermal conditions are under
considerations, ‘k’ is often replaced by ‘k(T)’ whose value is sub-
stituted in Eq. (2) by Arrhenius equation which then takes the
following form:

d˛

dt
= A exp

(
− E˛

RT

)
f (˛) (3)

whence A is pre-exponential factor, E˛ is the energy of activa-
tion and f(˛) is a function of degree of conversion, called reaction
model. Physically, A describes the collision frequency of particles
involved in the formation of activated complex; E˛ is the reaction’s
energy barrier and f(˛) furnishes information about the mecha-
nism of reaction(s). A combination of A, E˛ and f(˛) is known as the
kinetic triplet [1,17,18]. Each and every member of kinetic triplet
has its relevant complementary contribution to explain the whole
physical phenomenon.

2.1. Pre-existing kinetic triplet evaluation methods

2.1.1. Estimation of activation energy by isoconversional methods
Isoconversional methods are based upon the isoconversional

principle which states that: “at certain extent of conversion, the
rate of a solid state reaction depends only upon the temperature”
[1] as shown in Eq. (4):[

∂ ln(d˛/dt)
∂(1/T)

]
˛

=
[

∂ ln k(T)
∂(1/T)

]
˛

+
[

∂ ln f (˛)
∂(1/T)

]
˛

(4)

As  ̨ is constant, f(˛) is also assumed constant. Under these condi-
tions, Eq. (4) is reduced into Eq. (5) as following:[

∂ ln(d˛/dt)
∂(1/T)

]
˛

=
[

∂ ln k(T)
∂(1/T)

]
˛

= −E˛

R
(5)

Eq. (5) provides basis to calculate the values of the activation
energy in a model free way. However, thermally stimulated solid
state processes are intrinsically multi-step with variable energy
values. Even if E is apparently constant, there is still a probabil-
ity that all kinds of participating reactions have nearly similar
kinetic barriers or the overall kinetics is determined by a single
step despite of the fact that it includes several steps [5,9]. As the
reaction proceeds, its state alters with the degree of conversion.
Therefore, the objective to treat Eq. (3) or its different integral forms
under constant conditions of  ̨ is in fact, to estimate the variations
in E˛ at each value of ˛, which is one of the discriminating fea-
tures of isoconversional kinetics. In case of non-isothermal kinetics,
it is usually realized by using multiple heating rate programs.
Isoconversional methods can be isothermal/non-isothermal, dif-
ferential/integral and linear/nonlinear. They are named so because
they may  be inter-convertible by certain multiples arising from
numerical differentiation or the integration of temperature integral
and therefore generate nearly similar E–  ̨ dependency patterns [1].

By taking logarithm and rearranging Eq. (3) yields:

ln
(

d˛

dt

)
˛,ˇ

= − E˛

RT˛,ˇ
+ ln{Af (˛)} (6)

This expression is familiar well as Friedman’s Method [19]. The E˛

values can be determined by plotting ln(d˛/dt) against 1/T  at certain
values of ‘˛’ which inevitably demands numerical differentiation.
As a result, this method generates significantly scattered reaction
rates and therefore, irregular patterns of E˛ values.

There is still a possibility to avoid the numerical differentiation
by implying integral methods. So, integration of Eq. (3) results in:∫ ˛

˛0

d˛

f (˛)
= A

ˇ

∫ T

T0

exp
(

− E

RT

)
dT (7)

Say, if T0 is low, it is suitable to suppose ˛0 = 0 and assuming
that there is no reaction between 0 and T0. Eq. (7) then takes the
following form:

g(˛) = A

ˇ

∫ T

0

exp
(

− E

RT

)
dT =

(
A

ˇ

)
I(E, T) (8)

where g(˛) is called the integrated reaction model in Eq. (8). In
this equation, we confront with one of the crucial issues of thermal
analysis namely temperature integral I(E, T) [20] whose analytical
solution is unavailable. The similar matters can however be handled
alternatively by numerical analysis. A number of approximations
applied to numerically solve the temperature integral yields the
following generalized linear integral isoconversional method:

ln

(
ˇ

Tb
a

)
= Const. −

(
aE˛

RT˛

)
(9)

In Eq. (9), ‘a’ and ‘b’ are constants and ‘E˛’ is the energy of acti-
vation for an arbitrary linear integral isoconversional method. Eq.
(9) can be rearranged in the following way:

ln  ̌ − b ln T˛ = Const. −
(

aE˛

RT˛

)
(10)

Differentiation of Eq. (10) with respect to 1/T˛ provides the fol-
lowing equation:

d ln ˇ

d(1/T˛)
− b

d ln T˛

d(1/T˛)
= −aE˛

R
(11)

Eq. (11) can be written down in the following way:

E˛ = −R

a

[
d ln ˇ

d(1/T˛)
− b

d ln T˛

d(1/T˛)

]
(12)

whence d ln ˇ/d(1/T˛) is the slope of straight line drawn between
ln  ̌ and 1/T˛ at each value of ‘˛’ in Ozawa–Flynn–Wall (OFW)
method [21] denoted by (m˛)OFW and the graph between ln T˛

against 1/T˛ appears a straight at each value of ‘˛’ whose slope
is denoted by (m˛)T. Eq. (12) then takes the following form:

E˛ = −R

a
{(m˛)OFW − b(m˛)T } (13)

Therefore, the energy of activation of any linear integral isocon-
versional method at any value of ‘˛’ can be determined by implying
Eq. (13) provided that:

(i) The values of the constants ‘a’ and ‘b’ are known.
(ii) The values of ‘(m˛)OFW’ and ‘(m˛)T’ at the relevant values of ‘˛’

are known.

For instance (a, b) = (1.052, 0) for OFW method; (a, b) = (1, 2)
in case of Kissinger–Akahira–Sunose (KAS) method [22] and
(a, b) = (1.0008, 1.92) in case of Starink’s method [23], etc.
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