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a  b  s  t  r  a  c  t

The  prediction  of  a building’s  thermal  behaviour  within  a  short  time  horizon  is  necessary  in many  energy
management  applications.  A numerical  model  can serve  this  purpose  provided  a good  accuracy  is  obtained
through  a suitable  calibration  procedure.  The  paper deals  with  a model  calibration  procedure  based  on
short-time  on-site  and  weather  measurements.  It  builds  upon  optimal  control  theory:  an  adjoint  model
is  introduced  to derive  the gradient  of a least  squares  cost  function  at a low  computational  cost.  Two
problems  are  solved.  The  first  one  is  a non-linear  model  training  problem.  It consists  in  identifying  the
main  influencing  parameters  of  the  system  of  partial  differential  equations  that  form  the tendency  model.
The second  problem  is  a linear  identification  problem  that consists  in  identifying  the  unknown  internal
gains.  This  second  problem  can be solved  in  real-time  in a continuous  monitoring  process.  Both  problems
are  solved  within  the same  framework  and  same  tools,  illustrating  the  efficiency  of the  optimal  control
tools  in  this  context.  We give  simulation  results  that show  the  performance  of  the  calibration  procedure
under  uncertainties  on  input  parameters.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The accurate prediction of the evolution of the thermal state
of a building within a time horizon of a few hours is of great
importance in energy management applications [1,2]. Examples of
such techniques include a wide range of approaches such as artifi-
cial intelligence-based techniques [3], model predictive control or
demand-response applications. Model predictive control consists
in computing optimal heating or cooling strategies by taking into
account the future evolution of the state of the building under fore-
cast weather or use conditions [4,5]. Demand response strategies
in smart grids consist in adjusting energy demand at the end-user
level to reduce the overall demand thus resulting in end-user cus-
tomer bill savings, increase of electricity market stability and of
electricity supply reliability [6].

Such a prediction can be obtained using a numerical model that
implement the most predominant phenomena explaining the evo-
lution of the thermal state. However, modelling simplifications and
uncertainties concerning building characteristics such as geome-
try or material properties usually lead to discrepancies between
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the model predictions and the real performance. The desired model
response can be obtained if the internal parameters of the model are
calibrated using on-site measurements and model identification
methods [7,8].

This paper deals with an identification methodology used for the
calibration of a building energy model based on short-term mea-
surements of indoors and outdoors temperature, heat consumption
and total solar radiation. In order to be compatible with a large scale
deployment the model described here was designed to rely on very
simple end-user provided data such as floor area, envelope surface,
windows surface, orientation and composition of the wall. The cal-
ibrated model performance was  assessed under large uncertainties
on these data.

There exists a wide literature dealing with the identification of
building models. Regression techniques like ARX or ARMAX have
been used with success for the prediction of temperature evolu-
tion in buildings [9]. Several works report on the use of neural
networks for model training (see [10–12] for instance). This kind of
approaches is often referred to as black-box modelling approaches,
even if some attempts to introduce physical knowledge blur the
frontiers of the classification, like in [13] for instance. Their main
disadvantage is the long measurement periods needed to derive
the desired model.

The so-called “grey-box” modelling approaches combine phys-
ical considerations and experimental data. Madsen and Holtst [14]
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Nomenclature

s transparent glazing total surface (m2)
S total envelope surface (m2)
C zone heat capacity (J K−1)
Cw heat capacity per volume of envelope (J K−1 m−3)
Ca heat capacity per volume of air (J K−1 m−3)
k heat conductivity of envelope (W K−1 m−1)
hi convective exchange coefficients (i = 1, 2)

(W K−1 m−2)
� total solar radiation (W m−2)
Q internal heat gains (W)
R air mass exchange rate (m3 s−1)
W supplied electric heating energy (W)
� 0 solar input coefficient for the zone
� 2 solar input coefficient for the external envelope
Te outdoor air temperature (K)

use the maximum likelihood principle to determine the parameters
of a continuous-time model with two time constants. Identification
of various linear and non-linear models are compared in [15]. Braun
and Chaturvedi [16] propose a two-step identification procedure
for training the parameters of a simple thermal network model.
The use of techniques such as genetic algorithms has been reported
[17] for the estimation of simplified building models. The main dif-
ficulty in all those approaches consists in finding the model’s level
of complexity that gives the best compromise between sufficient
representation of reality and information embedded in the data.
Some attempts, including use of model reduction techniques, have
been made to systematically determine that optimum [18,19].

The identification methodology is derived in a continuous
framework based upon optimal control theory. The model equa-
tions are the standard partial differential equations for heat
diffusion. The main model parameters are calibrated during a train-
ing step through an identification procedure. The identification
problem is set as a quadratic cost functional minimization prob-
lem and the optimal solution is obtained through the introduction
of an adjoint system of equations. We  also suggest to solve a sec-
ond identification problem to determine, in real-time, the internal
gains that are not caught by the model. This works like a real-time
model performance indicator in a monitoring process.

The use of this continuous optimal control framework has
several advantages. First, the problem and solution algorithm is
derived in a continuous setting independently of time and space
discretization issues. Any discretization software can thus be used
and the algorithms can be implemented with a high-level program-
ming architecture. The second advantage concerns computational
cost. The cost function gradient can be obtained in a very fast way  by
solving the adjoint model, even in the case when the unknowns are
time-dependent functions. It is thus possible to solve in real-time
a load-estimation problem that enables to determine unknown
internal gains. This gives a way to monitor in real-time the accu-
racy of the model. Last, the identification procedure scales-up very
nicely for multizone buildings models with increasing geometrical
complexity.

The paper is organized as follows. We  first describe the mod-
elling assumptions and the derivation of a non-dimensional system
of equations that makes appear the identifiable parameters. We
then present the framework used to calibrate the model. For his,
the adjoint model is introduces and the Levenberg–Marquardt algo-
rithm is used to minimize a regularized quadratic cost functional. A
second optimization problem is suggested to estimate in real-time
the internal gains not caught by the model. We  finally give some
numerical results that show the relevance of the proposed model

Fig. 1. A thermal zone and the various heat transfers.

and training strategy to forecast the temperature evolution within a
short time horizon, depending on the quality of short term and local
weather conditions. The sensitivity of the model under important
input data uncertainties is assessed.

2. Model derivation

Although the proposed methodology applies to large scale
buildings consisting of multiple rooms or areas, we present it here
at the scale of a single building zone. We  adopt here standard zone
modelling assumptions and we define a thermal zone as a subvol-
ume  of the building, possibly comprising several rooms, in which
the supplied heating power is controlled by a single regulation
system and in which ambient air temperature is supposed to be
uniform (Fig. 1).

2.1. Modelling assumptions

Energy transfers in a building are either related to air mass
transfer phenomena or to heat exchanges between the various
components of the envelope. These two kinds of energy transfers
have dynamics of very different time constant so that it is nec-
essary to let them appear separately in the model equations [14].
Only the external envelope is taken into account so that interactions
between adjacent zones are neglected.

The evolution of the temperature T inside the zone is governed
by a standard ordinary differential equation:{

C
dT

dt
= �0s� + CaR(Te − T) + h1S(�(0, t) − T) + Q + W t ∈ [0, �]

I.C. (initial conditions)

(2.1)

In this equation, T (K or ◦C) is the temperature inside the zone and
t ∈ [0, �] is the time variable, C (J K−1) is an overall heat capacity
representing the quantity of heat that can be stored within the
building, including the effects of furniture and other non-envelope
components, while Ca (J K−1 m−3) is the heat capacity of the air
volume.

The first term in the right hand side corresponds to solar heat
gains: � = �(t) (W m−2) is the total solar radiation, s (m2) is the
transparent glazing total surface, and � 0 is a non-dimensional coef-
ficient which represents the portion of the total solar radiation
that effectively enters the zone. This coefficient depends on the
orientation of the outside faç ade and the position of the sun.

The second term of this equation represents the infiltration
or ventilation exchange between the zone and the outdoor envi-
ronment, R (m3 s−1) being the mean air mass exchange rate. The
outdoor air temperature is denoted Te and the third term corre-
sponds to convective heat transfers between the inside surface of
the wall at temperature �(0, t) (see below) and the zone. Convec-
tive transfers depend on the convective exchange coefficient h1
(W K−1 m−2) and the total envelope surface S (m2). Last, Q = Q(t)
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