Contents lists available at ScienceDirect

Energy and Buildings

journal homepage: www.elsevier.com/locate/enbuild

Multi-objective operation optimization and evaluation of large-scale NG distributed energy system driven by gas-steam combined cycle in China

Zhong-fu Tan^{a,*}, Hui-juan Zhang^a, Quan-sheng Shi^b, Yi-hang Song^a, Li-wei Ju^a

^a Institute of Energy Economics and Environment, North China Electric Power University, Beijing, China ^b School of Economics and Management, Shanghai University of Electric Power, Shanghai, China

A R T I C L E I N F O

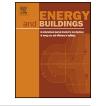
Article history: Received 3 September 2013 Received in revised form 3 January 2014 Accepted 11 March 2014 Available online 22 March 2014

Keywords: Distributed energy resources Multi-objective optimization Gas-steam combined cycle Operation strategies

ABSTRACT

Many pilot projects of large-scale distributed energy resources (DER) system have been constructed recent years in China and operation strategies make a great impact on their benefits and further development. This paper presents a multi-objective (joint) optimization model for the large-scale DER system of Guangzhou Higher Education Mega Center to obtain the optimal operation strategies under different daily periods: peak periods, flat periods, and valley periods. The prime mover used in this investigation is a gas-steam combined cycle based on combined gas turbines and steam turbines, and the DER system is evaluated under three different operation optimization modes: joint optimization mode of variable operational cost (VOC) and primary energy rate (PER), VOC optimization mode, and PER optimization mode. The primary energy consumption (PEC), PER, operational cost, and investment benefits of the DER system under different operation strategies of above three optimization modes are evaluated comparing with the buildings using conventional technologies. Results indicate that the VOC optimization mode provides the best combined cooling, heating, and power (CCHP) performance during flat periods by yielding the lowest PEC (133.78 kton/year) and operational cost (million \$ 35.98/year), and the joint optimization mode shows the best performance during peak periods by producing the lowest PEC (80.42 kton/year) and similar low operational costs (million \$ 21.74/year) to VOC optimization mode (million \$ 20.89/year).

© 2014 Elsevier B.V. All rights reserved.


1. Introduction

DER system refers to electric power generation system that is directly connected to medium voltage (MV) or low voltage (LV) distribution systems, rather than to the bulk power transmission systems [1]. DER is one of the modern energy supply modes, which could directly provide energy supply in the load centers, and realizes efficient utilization of various clean energy resources. The primary energy resources for DER are various, including natural gas (NG) energy sources, solar energy sources, wind energy sources, geothermal energy sources, biomass energy sources, etc. DER can be applied to many fields for various buildings, such as base load generation, emergency backup and peak/load shaving for industrial parks, university towns, airports, residential buildings, commercial buildings, and office buildings, etc. Most of DER systems mentioned above use NG as primary energy sources and are configured

http://dx.doi.org/10.1016/j.enbuild.2014.03.029 0378-7788/© 2014 Elsevier B.V. All rights reserved. according to their energy demand characteristics. Many strong advantages of DER have been showed during its application, such as higher energy efficiencies, environmental conservation, higher reliability, lower cost and higher flexibility, etc [2].

Considering above strong advantages, DER, especially the distributed NG, has obtained great concern recent years in China. To encourage the development and utilization of distributed NG, the policy "Guidance for NG distributed energy resources development" was formulated by National Development and Reform Commission and National Energy Administration in 2011. According to the policy, NG DER is defined as the distributed generation with NG as the primary energy source, and realizes the energy cascade utilization by combined cooling, heating and power, which many times boosts comprehensive energy utilization efficiencies to up to 70%. That is, NG distributed energy system is usually the CCHP system using waste heat from on-site electricity generation to meet the thermal demand of the facility. By the end of 2012, multiple pilot projects of NG distributed energy systems have been put into use in many places of China, such as Guangzhou Higher Education Mega Center, PVG, Shanghai Universal International Financial Center,

CrossMark

^{*} Corresponding author. Tel.: +86 13681032842. E-mail address: tanzhongfubeijing@126.com (Z.-f. Tan).

Nomenclature

Nomenciature			
Variables			
Е	electricity		
F	fuel input		
Q _{fg}	fuel gas yielded by gas turbines		
Q_{efg}	exhausted fuel gas from HRSG		
Q_{HPs}	high-pressure steam yielded by HRSG		
$Q_{\rm h}$	heat energy		
Q_h $Q_{ES,AC}$	heat provided by extracted steam of steam turbines		
QES,AC	to absorption chillers		
Q _{ES,HE}	heat provided by extracted steam of steam turbines		
0	to heat exchanger for hot water		
Q _{HW,HE}	heat recovered from heat medium water to heat exchanger for hot water		
Q _{HW,AC}	heat recovered from heat medium water to absorp-		
0	tion chillers for cooling		
Q_{c}	cooling energy		
PLR	part load ratio of gas turbine		
Er	rated electricity generation under full load condi- tion		
E _{el} conv	electricity required by buildings under conventional		
ei	technology		
е	the station service power consumption rate of CCHP		
	system		
PECe	the primary energy conversion factors for electricity		
PECng	the primary energy conversion factors for natural		
8	gas		
PECh	the primary energy conversion factor for heating		
	from thermal power plant		
р	price of energy		
Cost	operational cost		
i	discount rate		
n	the total operation years of CCHP system		
I_0	initial investments of CCHP system		
P_j	the dynamic payback period of CCHP system		
t	the <i>t</i> th hour or the <i>t</i> th time period		
k	the <i>k</i> th period, $k = 1$ means the valley period; $k = 2$		
R	means the flat period; $k = 3$ means the peak period		
т	the <i>m</i> th month, $m = 1, 2,, 12$		
T_k	the duration hours or time of <i>k</i> th period		
HV	heat value of energy		
α	weight coefficient		
Greek			
η	efficiency		

η	efficiency
δ	proportion of extracted steam from steam turbine
	to the available steam extraction

Subscripts

PE	primary energy
grid	grid
load	energy load required by the buildings
ng	natural gas
HW	hot medium water
ES	extracted steam
fg	fuel gas
efg	extracted fuel gas
HPs	high-pressure steam
g	total generation
el	electricity
EC	electric chillers
buy	buy from the grid
export	export to the grid

loss	loss	
max	maximum	
min	minimum	
h	heat load	
oth	other	
j	operation year	
Superscripts		
conv	conventional technology	
Acronyms		
AC	absorption chillers	
CC	compression electrical chillers	
CCHP	combined cooling heating and power	
CHP	combined heating and power	
СОР	coefficient of performance	
CS	cost savings	
CSR	cost saving ratio	
CSS	conventional separated system	
DER	distributed energy resources	
DES	distributed energy system	
DPP	dynamic investment payback period	
ESR	energy saving ratio	
FEL	following the electric load	
FTL	following the thermal load	
GHEMC	Guangzhou Higher Education Mega Center	
GT	gas turbines	
HE	heat exchanger	
HETS	hybrid electric-thermal load strategy	
HRSG	heat recover steam generator	
KW	kilowatt	
LV	low voltage	
MINLP	mixed-integer non-linear programming	
MOLP	multi-objective linear programming	
MV	medium voltage	
MW	megawatt	
NG	natural gas	
NPV	Net Present Value	
PEC	primary energy consumption	
PER	primary energy rate	
ST	steam turbines	
TOC	total operational costs	
VOC	variable operational cost	

University of Shanghai for Science and Technology, Shanghai Minhang Hospital, Beijing Olympic media village, and Zhongguancun Software Park, etc.

The sizes and applications of DES vary to a considerable degree, ranging in size from a few kilowatts (KW) to megawatts (MW) of power production, with applications to residential, commercial, industrial, or large-scale DES [3]. In general, there are usually two basic operation strategies for DES or CCHP systems: following the electric load (FEL) and following the thermal load (FTL). In the case of FEL operation strategy, the prime mover is loaded according to the electric demand of the facility and the waste heat from this loading is recovered to satisfy the thermal load of the facility. If the recovered thermal energy is not enough to handle the thermal load (cooling or heating) of the facility, additional heat has to be provided by the auxiliary boiler of the CCHP system. For the FTL strategy, the prime mover is loaded such that the recovered waste heat will be adequate to supply the facility with the necessary thermal energy to satisfy the heating and cooling requirements. For this strategy the amount of electricity produced may be insufficient or

Download English Version:

https://daneshyari.com/en/article/6733928

Download Persian Version:

https://daneshyari.com/article/6733928

Daneshyari.com