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a  b  s  t  r  a  c  t

Two  dispersive  kinetic  models  (DKMs)  are  used  for  the  first time  to precisely  simulate  the  evolution  of
the  activation  energy  barrier,  �G‡, as a function  of the  extent  of  conversion,  x,  of  hypothetical  conversions
with  realistic  physical  parameters.  The  simulated  �G‡–x plots  closely  resemble  certain  trends  reported
in  the  recent  experimental  literature  obtained  using  so-called  isoconversional  methods  of  thermal  anal-
ysis (TA),  thus  forging  a new  link  between  the  experimental  results  and  dispersive  kinetics  theory.  The
simulations  provide  unprecedented  mechanistic  insight  into  such  data  trends.  It  is easily  deduced  that
the  activation  energy  distributions  underpinning  the  two DKMs  are  responsible  for  producing  the  dis-
tinct  variations  observed  in �G‡.  That  is  because  DKMs  utilize  the concept  of  a distribution  of activation
energies  to  simultaneously  treat  the  kinetics  and  dynamics  that  can  be  observed  in  elementary  conver-
sions  and  that  classical  kinetic  models  (CKMs),  which  assume  a  single  activation  energy  to model  just  the
kinetics  in  the  absence  of dynamical  effects,  cannot  properly  describe  (Skrdla,  2013).  While  the  use  of
DKMs  in  TA  applications  remains  quite  limited,  the two  DKMs  considered  herein  have  been  discussed  in
detail  elsewhere  and  their  application  to a host  of  different  conversions/phase  transformations  has  been
demonstrated  under  isothermal  conditions  (Skrdla,  2009).  In the  present  work,  those  DKMs  are  used to
simulate non-isothermal  �G‡–x trends.  Through  the  course  of  these  investigations,  it  is  found  that  the
simulated  data  sets  also indicate  that  the  heating  (cooling)  rate  can  have  a  dramatic  impact  on kinetic
determinations,  whereas  current  isoconversional  methods,  relying  on  classical  kinetic  theory,  predict
no such  effect.  The  last  finding  points  to  a need  to  develop  new  thermal  methods,  based  on  the  theory
underpinning  DKMs  rather  than  CKMs,  to  more  rigorously  model  dispersive  kinetic  processes  that  exhibit
distributed  reactivity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and goals

So-called “complex conversions” in the thermal analysis (TA)
literature are those processes whose kinetics are typically char-
acterized by more than one activation energy barrier. Using
isoconversional methods [1] to allow flexibility in the determina-
tion of the activation energy (�G‡) at each value of the extent of
conversion (x), one can expect to observe non-linearity in plots of
�G‡ versus x produced by complex conversions. In the absence of
multiple rate-limiting steps/competing reactions (that are mecha-
nistically distinct from each other), it is also possible for a single,
elementary conversion to exhibit complex kinetic behavior. In such
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cases, it is the concurrent dynamical evolution—leading to system
relaxation/continuous renewals [2]—occurring with a rate compa-
rable to, or slower than, the rate of conversion that produces the
variation in �G‡ that can be observed experimentally.

An easy way  to identify a dispersive kinetic process, which is
underpinned by an activation energy distribution, g(�G‡), is by the
sigmoidal (S-shaped, e.g. “Avrami-like”) nature of the conversion
transient observed under isothermal conditions [3,4]. Such trans-
ients can be modeled in a deterministic manner using dispersive
kinetic models (DKMs) [5].

Unfortunately, the majority of deterministic kinetic models
found in the TA literature are classical kinetic models (CKMs)
that do not consider dynamical effects. Indeed, CKMs inherently
assume that the system relaxation is always much faster than the
conversion rate and thus the dynamics have no bearing on the rate-
limiting step (i.e. on the kinetics). Curiously, the reliance on CKMs
appears to conflict with certain present-day understanding, e.g. of
the fact that the spatial location of monomers inside of a crystal
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can affect their individual conversion rates [6]. Moreover, the use
of CKMs is inconsistent with the notion of “distributed reactivity”
[1] that is also a widely accepted idea in TA and, just as impor-
tantly, it is a foundational concept behind dispersive kinetic models
(DKMs) [3]. As widespread usage of DKMs is currently lacking,
in part because dispersive kinetics (including molecular and con-
densed phase dynamics) is an evolving field, one of the overarching
goals of this work is simply to stimulate interest by demonstrating
the potential utility of DKMs in TA.

The way in which different spatial location can affect the reac-
tivity of a monomer inside a crystal lattice can be viewed in at
least two different ways. Firstly, for a conversion that is initiated
at the surface (e.g. at a grain boundary), one can expect that an
interior monomer will convert later on during the process than a
surface-bound one (and that the opposite should hold for a conver-
sion beginning at a defect site inside of the crystal). The different
conversion times necessarily correlate to different specific rates (a
dynamic effect, rather than a kinetic one) and, consequently, to dif-
ferent activation energies (via the well-known Arrhenius equation).
Alternatively, one can consider the different thermodynamic ener-
gies of the various spatially-distributed monomers (e.g. the number
of nearest neighbors) [7] within the crystal as those energy varia-
tions can likewise affect the magnitude of the activation energy
barrier facing each lattice monomer. In either case, the end result
is a distribution of activation energies, g(�G‡), that must be consid-
ered in place of the single �G‡ that is typically assumed with the
use of CKMs via the assumption of a (single) rate constant [3]. Like-
wise, for processes that are nucleation or denucleation rate-limited
and in which the system supersaturation is not fixed (by a contin-
uous influx of monomers/crystals of the initial phase), the system
relaxation dynamics naturally lead to the production of differently
sized critical nuclei at different times during the conversion–thus,
further contributing to the observation of mathematically smooth
activation energy distributions [12].

In terms of deterministic models, only certain DKMs can
properly describe processes in which there is inherent system
heterogeneity, of the type discussed above, that gives rise to a mul-
titude of specific rates/distribution of activation energies that is also
known as “distributed reactivity” [1,5,8] in TA. In cases where the
dynamics/system relaxation are sufficiently fast so as to allow them
to be considered negligible in affecting the conversion rate, the
DKM simply reduces to the CKM on which its derivation was  based
(the F1 model, in this work) due to the fact that g(�G‡) becomes
infinitely narrow and, hence, a single-valued �G‡ is recovered.
Note that the terms “complex conversion”, “system relaxation”,
“dynamical evolution”, “dispersive kinetics”, “distributed reactiv-
ity”, “system heterogeneity”, “non-linear �G‡–x plot”, “sigmoidal
conversion transient”, “activation energy distribution”, “variable
activation energy”, etc., can all be used interchangeably, as per this
work, since they all relate the same fundamental behavior in the
context of solid-state kinetics.

The advent of the isoconversional methods, beginning several
decades ago, provided some of the earliest evidence of the exist-
ence of variable activation energy in solid-state kinetics [9]. In
recent years, the concept has gained broader acceptance for two
reasons: firstly, it has been widely reported to-date in experimen-
tal works and, secondly, there is sound rationale for such behavior,
as per the above discussion. However, while isoconversional meth-
ods allow flexibility for the activation energy to evolve over the
course of a given conversion, their derivation provides no clues as
to why such behavior should be observed for certain conversions
but not for others. In other words, they provide no mechanistic or
physical insight to help rationalize the variability in �G‡. On the
other hand, DKMs provide a concrete physicochemical basis for
such variation, even for processes that are rate-limited by a single
conversion mechanism (F1) over their entirety, as will be shown

in this work. Moreover, as each of the two  DKMs presented herein
is linked to a specific mechanism—either nucleation or denucle-
ation (the complementary process to nucleation)—one can use the
results of the simulations presented herein to potentially identify
the rate-limiting process behind various literature data.

The two DKMs of interest here have been presented in the recent
literature for application to isothermal data [4,5]—one describing
so-called [1] “acceleratory” conversion transients and the other
“decelerating” ones. In the present work, they are used in a brand
new way  to simulate the evolution of the activation energy, �G‡,
as a function of the extent of conversion, x, at different heating
rates (pertaining to non-isothermal conditions). The key goal of
doing so is to determine whether the simulations can be used to
explain with more physical rigor and mechanistic insight some of
the distinctly curved �G‡–x plots reported previously in the exper-
imental literature obtained using isoconversional methods [1]. Due
to the prevalence of non-isothermal methods in the TA literature
[1], the simulations are conducted at different heating rates, h, and
the effect of such on the �G‡–x plots is also discussed.

1.2. Theory: dispersive kinetics

The derivation of most DKMs found in the literature can be
traced to the following expression [8]:

x =
∫ ∞

0

exp

[
−

∫ t

0

k dt

]
g(�G‡)d�G‡ (1)

From Eq. (1) it is clear that two factors are important in defining
the DKM: the functional form of g(�G‡) and the time-dependence
of k, the rate coefficient (not rate constant). Unfortunately, Eq. (1)
does not explicitly require a physicochemical link between those
two functionalities, unlike the author’s (less direct) approach [5].
Naturally, the static description provided by g(�G‡) and the dynam-
ical description of �G‡ evolution as a function of time, t, should be
directly mathematically relatable.

The derivation of the DKMs of interest here [5] begins with the
use of the Maxwell–Boltzmann (M–B) distribution to relate not only
the basic functional form of g(�G‡), but also to extract the approx-
imately Gaussian t-dependence of k that was further probed in
a recent work [10]. Unfortunately, as it is not possible to obtain
analytic solutions to Eq. (1) using the M–B distribution directly
(and/or the Gaussian functional form of k), the original derivation
applied various simplifying approximations and assumptions dis-
cussed previously [5]. That was done to ensure that the DKMs do
not require numerical methods for evaluation, thus allowing them
to be readily used by experimentalists.

Acceleratory sigmoidal conversion transients [5,10,12] that are
typically observed for nucleation-and-growth rate-limited pro-
cesses [13–15] are often well-described by the DKM,  below, that
assumes a rate-limiting first-order (F1) conversion mechanism:

x = 1 − e−[˛/t][e(ˇt2)−1] (2)

where x represents the fraction of product in the system at any
time, t (i.e. the extent of conversion). The two fit parameters,  ̨ and
ˇ, have units of s and s−2, respectively, and they have the follow-
ing physical interpretations that are supported by classical kinetic
theory in the t-independent limit (whereby, in cases when  ̌ → 0
in Eq. (4), the second exponential term in square brackets never
enters the derivation and thus Eq. (2) similarly reverts back to the
classical F1 model):

 ̨ = An−1e−�H‡/RT (3)

ˇ = �S‡

Rt2
(4)
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