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a  b  s  t  r  a  c  t

Model-based  optimal  controls  in  HVAC  systems  involve  uncertainties  due  to model  uncertainties  and
measurement  uncertainties.  These  uncertainties  affect  the  accuracy  and  reliability  of  the  outputs  of  opti-
mal  control  strategies,  and  therefore  affect the energy  and  environmental  performance  of  buildings.  This
study proposes  a method  to  enhance  the robustness  of optimal  control  strategies.  A fuzzy  approach  is
adopted  to  predict  the  errors  in  models  outputs.  Such  predicted  errors are  then  used  to  correct  the  model
outputs.  The  method  is validated  in an  optimal  control  strategy  for HVAC  cooling  water  systems.  The
operation  data  of a real building  system  is used  to  validate  the  error prediction  method.  A simulation
platform  is  built  to  validate  the enhanced  strategy.  Measurement  uncertainties  are  deliberately  added  to
the  simulated  system  for validation  tests. Test  results  indicate  that  the  method  is  effective  in  predicting
the  errors  in  model  outputs.  Significant  energy  savings  are  achieved  compared  with  the  conventional
optimal  control  method.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimal control strategies are often used in air-conditioning
systems. They provide the most proper set-points, so that the sys-
tem could operate at minimum cost. Model-based optimal control
strategies have been studied extensively in the last two  decades
[1]. However, not all the strategies are suitable for practical imple-
mentation in real systems, although they have high energy saving
potentials. One of the concerns is the risk caused by uncertainties
during system operation. As stated by many researchers in the con-
trol field, a critical problem in control systems is how to deal with
uncertainties [2].

The uncertainties could come from measurement errors, model
errors, etc. The measurement errors are always contained in the
input of control strategies regardless of the sensor accuracy level.
The model errors could come from the model structure error and
the model parameters trained using measured operation data. Even
though models are perfectly trained at initial stage, system degra-
dation will also make the model outputs not be able to simulate
the real system accurately [3]. For example, the calculated heat
exchanger coefficients will be lower than the real value when there
is a slight fouling in heat exchangers like condensers and cooling
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towers. The degradation may  happen not only on equipment but
also on measurement instruments.

Studies on the uncertainty in optimal control strategies of
air-conditioning systems have not been conducted extensively in
spite of its essential role. The only few studies mainly focused on
developing methods for local control which aims at keeping the
system following the set-points promptly and steadily. Huang and
Wang developed a two-loop robust control strategy for local con-
trol considering uncertainties in air-conditioning systems [4]. The
method is more robust and stable comparing to the PI control when
validated in a first order plus time delay system. There are some
other researches on uncertainty analysis in building energy con-
sumption [5–7].

A few other studies focused on measurement uncertainties. Lee
and Dexter developed a fuzzy method to enhance the measure-
ment of the supply air temperature in an air handling unit (AHU)
[8]. The method was validated using computer simulation of a mix-
ing box in AHUs. Results indicate that the method could reduce
sensor bias. Shan and Wang conducted a sensitivity and uncer-
tainty analysis of measurements in cooling water control system
[9]. The significances of the input variables were identified in the
study. The energy dispersion is also achieved in the research. How-
ever, the analysis only provides the information for assessing the
risk of implementing those strategies. Therefore, further research
should be conducted to improve the accuracy and robustness of the
strategies.
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Nomenclature

� density
ε error
ı iteration criteria
� parameter vector
ϕ(·) constraint function
A heat transfer area
a1–a9 coefficients
b1–b3 coefficients
c center of cluster
c1–c9 coefficients
cp,w water specific heat at constant pressure
CAP capacity
E energy
f(·) cost function
Freq frequency
h enthalpy
J operation cost
k case k
M flow
M(·)  model structure
N number
Q heat
T temperature
U heat transfer coefficient; uncertainty model
u degree of membership in FIS
RH relative humidity
W power
x input vector
y  true value to be predicted
ŷ model predicted value
y* uncertainty model corrected value

Subscripts
� parameter vector
1′ compressor inlet of a fictitious refrigeration cycle
2′ compressor outlet of a fictitious refrigeration cycle
3′ evaporator inlet of a fictitious refrigeration cycle
a air
cd condenser
ch chiller
com compressor
ct cooling tower
db dry bulb
des design
diff difference
ev evaporator
fic fictitious
in inlet
load cooling load
out outlet
ref refrigerant
s structure
sample sampling
sp set-point
tot total
w water
wb wet bulb
x input vector

Another issue in the model-based optimal control strategies is
that the parameters for evaluating system performance are not fed
back to the input of the strategies. In other words, those strategies

are open loop control methods. The performance parameters are
determined at the stage of model training and fixed in the late appli-
cation. As a result, the performance of the control system could not
be automatically adjusted when there are uncertainties. Such opti-
mal  control strategies could be improved by taking the performance
parameters as inputs to correct the output online. For instance,
the powers of chillers and cooling towers could be included as the
inputs of an optimal control strategy for cooling water system.

The machine learning (ML) technique is one of the dominant
solutions to the variation in operating condition. It could be applied
in many fields for handling the uncertainty problems [2,10]. The
main advantage of ML  technique is that it is capable of discov-
ering knowledge from operation data and then predicting the
system behavior. The ML  technique consists of several approaches,
including the support vector machines, artificial neural networks,
Bayesian networks, decision tree learning, clustering, etc. [11,12].

In this study, a method based on the fuzzy cluster analysis is
developed. The fuzzy cluster analysis has been approved in practice
[13–15]. A fuzzy inference system (FIS) is built for predicting the
total errors in model outputs. The parameters indicating the con-
trol performance are required for training the FIS. As a result, the
proposed optimal control is a feedback control. The control system
is updated continuously during online operation so that the total
errors of the model outputs could be predicted with high accuracy.

The method is validated in an optimal control strategy for cool-
ing water systems. The performance of the FIS in predicting model
error is validated using the operation data of a real system. A virtual
simulation platform is built to assess the dynamic performance of
the enhanced strategy.

This paper is organized as follows: Section 2 describes the
method for enhancing the robustness of control strategies. Section
3 presents the validation of the method. A model-based optimal
control strategy with enhanced robustness for optimizing cooling
water temperature is presented. The validation methods are also
presented in this section. Section 4 presents the validation results.
Section 5 presents the conclusion.

2. The model-based optimal control strategy with
enhanced robustness

2.1. Errors in conventional model-based optimal control
strategies and the correction method

An optimal control strategy targets to achieve a certain opti-
mal  criterion for a given system. Normally, a cost function f(·) and
a constraints function ϕ(·) are applied in an optimal control strat-
egy (Eq. (1)). The cost function represents the “cost” of operating
the system, such as energy or power consumption. The constraints
function represents the limitations in the system. Such limitations
could be weather condition, equipment capacity, energy and/or
mass balance, etc.

J = min  f (·)subject to ϕ
(

x, �
)

= 0 (1)

where, J is the operation cost, x is the input vector, � is the parameter
vector.

The constraints function is normally represented by a system
model in an optimal control strategy. The system model could be
physical model, gray-box model or black-box model [1]. All the
models are expected to be capable of predicting system behavior
when the input vector changed. However, the model errors can
hardly be avoided no matter how carefully they are built. The errors
also vary with different working conditions.

As described in Eqs. (2) and (3), there are three types of errors
in the model outputs: model structure error, model parameters
error and model inputs error (often measurement error). The error
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