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a  b  s  t  r  a  c  t

The  artificial  neural  network  (ANN)  technique  with  a feed-forward  back  propagation  algorithm  was  used
to examine  the  effect  of  clay  composition  and  temperature  on  thermal  stability,  crystallinity  and  ther-
momechanical  properties  of poly(ethylene  oxide)/clay  nanocomposites.  Based  on dynamic  mechanical
analysis  (DMA),  differential  scanning  calorimetry  (DSC)  and thermogravimetric  analysis  (TGA)  experi-
ments,  values  of  decomposition  temperature,  char  yield,  enthalpy  of  melting,  storage  modulus  (E′)  and
tan ı were  successfully  calculated  by well-trained  ANNs.  The  simulated  data  is  in very  good  agreement
with  the  experimental  data. ANN  results  confirm  that  thermal  stability  of  PEO  nanocomposites  increases
with  the  decrease  of  enthalpy  of  melting  and  relative  crystallinity,  and  there  is  a directly  proportional
relationship  between  the  modulus  (stiffness)  and thermal  stability.  The  ANN  technique  is confirmed  to
be  a useful  mathematical  tool  in  the thermal  analysis  of  polymer/clay  nanocomposites.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During the past two decades, polymer/clay nanocomposites
have received great attention from both academia and industry
since the properties of these materials can be greatly improved
compared with the pure polymer or conventional polymer compos-
ites. These enhanced properties can be summarized as increased
strength and modulus [1–3], increased thermal stability [4],
improved barrier properties [5] and decreased flammability [6].
Different types of polymers have been used as matrix materials
in order to fabricate polymer/clay nanocomposites with improved
properties. Among these polymers, poly(ethylene oxide) (PEO) has
been a promising material since it has been used in so many dif-
ferent areas such as denture adhesives, packaging films, thickening
of water-based paints, friction reduction, purification of biological
materials, and pharmaceutical drugs. In addition to these appli-
cations, poly(ethylene oxide) has been recognized as a potential
solid polymer electrolyte (SPE) which can be used in rechargeable
solid-state lithium-ion polymer batteries [7,8].

Poly(ethylene oxide) has a suitable structure that can provide
fast ion transport [9,10], and also it has the capability of dissolving
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so many different salts [11]. On the other hand, the most important
disadvantage of PEO is its low ionic conductivity at room tempera-
ture due to the high concentration of its crystalline phase. For this
reason, many different methods have been used in order to mini-
mize the concentration of PEO crystalline phase while maintaining
its flexibility and mechanical stability which extends over a wide
temperature range [12,13]. One of the most effective methods has
been the addition of inorganic filler materials such as clay or silica
nanoparticles to PEO [14–17].

In polymer composites, finding the optimum filler composi-
tion for the best mechanical and physical properties is a very
time-consuming process. For this reason, intelligent computational
systems have been used to reduce the routine experimental charac-
terization in the development of new polymer composites [18–20].
Among these well-established computational techniques, artificial
neural network (ANN), multiple linear regression (MLR) and sup-
port vector regression (SVR) can be given as the profound examples
[21–24].

The ANN approach was  recently introduced into the field of wear
of polymers and it was shown that ANN is a helpful mathemati-
cal tool in the structure–property analysis of polymers based on a
limited number of measurement results [19,25,26]. Besides wear
properties of polymers, ANN technique was utilized to predict the
stress relaxation of a polymer composite, and it was found out that
the ANN model is more accurate over a wider range of stress and
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temperature than those of the explicit nonlinear viscoelastic con-
stitutive model [27]. Recently, the thermal degradation behavior of
nylon6/feather keratin blends was successfully predicted by imple-
mentation of artificial intelligence techniques on experimental TGA
data [28].

The mechanical and wear properties of short fiber reinforced
polyamide composites were examined by ANN, and the results of
the study showed that prediction quality of ANN has the potential
to be improved if the database for the ANN training process could
be enlarged or the configuration of network could be further opti-
mized [29]. Other researchers also found the same results about the
number of data, and showed that a larger training dataset should be
required if the nonlinear relationship between the input and output
is more complex [19,30,31]. In polymer/clay nanocomposites, ANN,
MLR  and support vector regression (SVR) methods were applied in
order to correlate dynamical mechanical properties with temper-
ature and clay composition. The study showed that SVR and ANN
exhibit better performance when compared to MLR  [32]. It was pre-
viously shown that the relationships between the conditions and
the mechanical properties for compatibilized styrene/rubber blend
are too complex to be explained by central composite design (CCD)
polynomials, but are well described by the ANN models [33].

In this paper, the artificial neural network technique with a
feed-forward back propagation algorithm was used to predict the
effect of clay composition and temperature on the crystallinity,
thermal stability and thermomechanical properties of PEO/clay
nanocomposites. The purpose of this work is to emphasize the
benefits of using the ANN method in the prediction of crys-
tallinity, thermal stability and thermomechanical properties of
untested PEO/clay nanocomposites without performing lengthy
and time-consuming experiments. In polymer/clay nanocompos-
ites, the general relations of thermal stability, crystallinity and
thermomechanical properties with respect to temperature and clay
composition are usually known. However, still extensive experi-
mental measurements should be performed in order to know the
exact value of each nanocomposite’s property. This large scale of
laboratory measurements could be effectively reduced by applying
the ANN prediction technique to polymer/clay nanocomposites.

2. Experimental

2.1. Materials

PEO with average Mv = 200,000 g/mol was purchased from
Aldrich. Na+MMT  (Cloisite Na+) with an average cation exchange
capacity of 1.0 meq./g was kindly supplied by Southern Clay Prod-
ucts. PEO and clay were dried at 50 and 60 ◦C, respectively for
24 h in a vacuum oven. The samples were prepared in a deion-
ized water/methanol (3:1) solvent mixture. The mixtures were first
stirred at 70 ◦C for 24 h. Then, homogenous solutions were ultra-
sonicated in an ultrasonic bath at room temperature for 1 h. The
solid films were produced by casting a sample onto a glass mold
by slowly evaporating the solvent in air for 3 days. The films with a
thickness of ∼150 �m were put in a vacuum oven at 50 ◦C for 24 h in
order to get rid of the extra solvent. The dried films were stored in
a dessicator prior to any characterization. PEO/clay nanocomposite
samples that were prepared in this study consist of 0, 5, 10, 15 and
20 wt.% clay compositions.

2.2. Physical/chemical characterization

Determination of the thermal stability of materials was  per-
formed on a Perkin Elmer Thermogravimetric Analyzer Pyris 1
TGA. The measurements were conducted from 20 to 630 ◦C at a
heating rate of 10 ◦C/min under N2 flow. The thermal behavior

of samples was  studied with DSC (Perkin Elmer Diamond). About
7 mg  of sample was  placed in an aluminum pan and heated from
25 to 125 ◦C at 10 ◦C/min, then cooled back to −65 ◦C at 10 ◦C/min
and heated again from −65 to 125 ◦C at 10 ◦C/min. The data of the
third cycle was  used. The reference was an empty aluminum pan.
High purity nitrogen supplied at 50 mL/min was used as the purge
gas. DMA  of the nanocomposites was  carried out using a Perkin
Elmer Pyris Diamond DMA, at a fixed frequency of 1 Hz from −90 to
50 ◦C with a heating rate of 4 ◦C/min in tension mode. The sample
size was  35 mm × 5 mm × 0.14 mm.  Scanning electron microscopy
(SEM) experiments were performed using a Zeiss ULTRA Plus
FE-SEM. The SE detector and 1.00 kV accelerating voltage were
used during the experiments. Attenuated total reflectance Fourier
transform infrared (ATR FT-IR) spectroscopy was performed using
a Perkin Elmer Spectrum Two  IR spectrophotometer (US). The
sample surface was scanned in the 600–4000 cm−1 frequency
range. The ATR-FT-IR spectra were recorded at room temperature.
The background subtraction and baseline correction were done.

3. Proposed methodology

For the ANN prediction model, we used the MATLAB platform.
The proposed ANN model is based on experimental results. All input
data are normalized between 0 and 1 by using the normalization
equation (Eq. (1)). The minimum and maximum values of exper-
imental data are defined as xmin and xmax, respectively. High and
low limits are defined as 1 and 0, respectively for the normalization
between 0 and 1.

xn = x − xmin

xmax − xmin
(high limit–low limit) + low limit (1)

The basic elements of the proposed ANN architecture are shown
in Fig. 1. The structure of an ANN is organized in multiple layers
such as the input layer, hidden layer(s), and output layer which
are composed of units called neurons. The weight coefficient (wi,j)
that is directed from the ith neuron in the input layer to the jth
neuron in the hidden layer is determined by the network. The data
in the input layer is used according to the following rule (unless
otherwise noted): 70%, 15% and 15% of the data are used for the
training, validation and testing, respectively (here, the testing is
done by ANN, itself). Each of the input data, xi that is coming from
the ith neuron in the input layer is multiplied by wi,j and added
with bj which is the bias of the jth neuron in the hidden layer. This
operation is done for each neuron in the hidden layer. The result, uj
is operated by the transfer function to find yj (The equation in the
hidden layer of Fig. 1).

In the present work, for the networks containing one
hidden layer, a tan-sigmoidal non-linear transfer function
{f(x) = (1 − e−2x)/(1 + e−2x)} was  used between the input and hidden
layer. For the networks containing two  hidden layers, a tan-
sigmoidal and log-sigmoidal {f(x) = (1/(1 + e−x)} non-linear transfer
functions were used as the first and second transfer functions,
respectively. During the transition to the output layer, yj is multi-
plied with wj,k which is the weight coefficient directed from the jth
neuron in the hidden layer to the kth neuron in the output layer, and
then added with bk which is the bias of the kth neuron in the output
layer. This result is operated by the purelin linear transfer function
{f(x) = x}to obtain the output value. In summary, a result is obtained
from the values coming from two  input neurons. This result is com-
pared with the experimental data via the mean square error (MSE)
performance function, and then the error value is calculated.

In this ANN prediction technique, feed-forward back propaga-
tion algorithm which has been widely used in polymer applications
[18,34,35] was selected. This algorithm compares the experimental
data with predicted data which was obtained by using feed-forward
calculations. The weight coefficients and bias values were updated
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