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A B S T R A C T

In this work, a simple stabilized central difference technique is discussed, to analyse nonlinear models. The
proposed technique is unconditionally stable for linear systems and it provides enhanced stability features for
nonlinear applications. The proposed method stands as a direct single step procedure, avoiding any iterative
computations when solving nonlinear models; thus, it is very efficient. In addition, it is extremely accurate,
providing much reduced period elongation and amplitude decay errors, compared to standard methods. The
present work also introduces a criterion for updating the nonlinear system matrices, significantly reducing the
computational complexity of the simulation and enhancing the efficiency of the technique. Numerical results are
presented along the manuscript, illustrating the performance and accuracy of the proposed methodology.

1. Introduction

The method of lines [1] is a commonly used technique to simulate
structural dynamic phenomena numerically. Here, the governing
equations are first semi-discretized in the spatial domain and the re-
sulting system of ordinary differential equations (ODE) is solved by an
appropriate time-marching scheme, afterwards. Inherently, the math-
ematical complexity of the described simulation process grows dis-
proportionately faster compared to the macroscopic complexity of the
problem in focus and, consequently, a reasonable balance between the
accuracy and the numerical costs of the simulation has to be kept. The
propagation of the approximate solution in time represents a big part of
the computational cost necessary for the simulation process, especially
when non-linear behaviour is taken into account. Therefore, efficient
time-marching procedures are crucial in order to obtain reliable results
at a reasonable cost. In non-linear structural dynamics, usually direct
integration methods are applied. These can be subdivided in two fa-
milies, namely explicit and implicit procedures. In an implicit ap-
proach, the constitutive variables are expressed as functions of the
current time of analysis. In this case, when nonlinear models are fo-
cused, the solution has to be carried out by iterative schemes, such as
the Newton-Raphson algorithm [2], which always cause a significant
computational overhead. Furthermore, these schemes may also have a
negative impact on the convergence behavior and consequently the
application of an implicit method can be computationally very

demanding. In explicit approaches, on the other hand, all constitutive
variables are available from computations at previous time-steps.
Hence, the calculations necessary to propagate the approximate solu-
tion one increment further in time are quite simple and – in case
lumped mass and damping matrices are considered – usually do not
require the solution of any linear system of equations. However, due to
conditional stability, classic explicit methods often imply restrictive
limitations for the incremental time step size tΔ , resulting once again in
high computational costs.

Classic explicit time stepping schemes are often modified by ma-
nipulating the system matrices, which result from the spatial semi-
discretization, in order to improve stability properties. For example, in
classic mass scaling approaches [3–5], an explicit time marching pro-
cedure is applied in combination with a perturbed system mass matrix.
This influences the inertia and consequently the natural frequency of
the discretized system, and may result in a larger critical time incre-
ment [6]. These methods are easy to add to an existing explicit simu-
lation environment and they provide good results in many cases.
However, if the time increment is not taken into account for the choice
of the scaling matrix, convergence is not guaranteed anymore and un-
reliable results might be obtained. Another approach to enhance sta-
bility is the design of so-called hybrid methods, such as the Rosenbrock-
Wanner methods, described in [7,8], the family of procedures presented
by Tamma et al. [9–11], or the stabilized central difference scheme,
discussed in [12]. These methods are often referred to as ‘nonlinearly
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explicit’, since they may require the solution of a linear system in the
linear case, but do not involve any nonlinear iterative process if non-
linear phenomena are considered. In these cases, an approximation for
the stiffness of the system is still required at each time step. Thus,
computationally expensive updating procedures are necessary. Moti-
vated by the method presented in [12], the present work introduces an
update criterion for the approximate stiffness, significantly reducing the
computational complexity for the simulation process. By the applica-
tion of an approximate stability condition, taking into account the
softening and hardening behaviour of the considered model, a simple,
adaptive update criterion is established, which renders an efficient and
very competitive time marching technique. In addition, the metho-
dology discussed in [12] is further generalized in this work, allowing
considering physical damping in the model, as well as exploring more
complex nonlinear systems.

In the next section, the stabilized central difference scheme is briefly
summarized, followed by a stability analysis, the deduction of the new
update criterion, and the resulting algorithm. In Section 3, different
linear and nonlinear numerical examples are presented, illustrating the
performance and potentialities of the proposed technique.

2. The stabilized central difference method

The governing system of equations describing the non-linear dy-
namic model in focus is given by [13]:

+ + =t t t tMU CU P F¨ ( ) ¨ ( ) ( ) ( ) (1)

where M and C stand for the mass and damping matrices, respectively,
resulting from the spatial discretization, P(t) denotes the vector of nodal
point forces corresponding to the element internal stresses, and F(t)
stands for the vector of externally applied nodal point forces. P(t) is a
function of tU( ). and tU( ), tU̇( ) and tÜ( ) represent displacement, ve-
locity and acceleration vectors, respectively. In linear analysis, P(t) is
usually represented as tKU( ), where K stands for the linear stiffness
matrix of the model.

In the proposed stabilized approach, the mass matrix of the model is
modified, incorporating stability to the classical central difference (CD)
methodology. Thus, a new mass matrix ′M is considered, which is
formulated as follows:
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where KT stands for the tangent nonlinear stiffness matrix, tΔ is the
adopted time-step and a stands for a time integration parameter. Eq. (2)
stands as an extended development of the modified mass matrix pre-
sented in [12]. In this new modified mass matrix, an extra term, which
considers the damping matrix of the model, is proposed, enhancing the
generality and the benefits of the stabilized method.

Taking into account the standard central difference method,
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and the new mass matrix (Eq. (2)), the time domain solution of Eq. (1)
can be expressed as indicated in Eq. (4), once Eqs. (2) and (3) are ap-
plied to Eq. (1) at time step n:
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Eq. (4) defines the proposed new time marching technique. As one
can observe, the proposed technique stands as a simple single-step
procedure, allowing to solve the non-linear model directly; i.e., without
any iterative process or any sub-step routines. Thus, the proposed ap-
proach exhibits a good level of efficiency.

In Eq. (4), the tangent stiffness matrix KT is related to the time in-
stant tn (as well as the internal force P), and consequently it has to be
re-evaluated at each time step of the nonlinear analysis for a consistent
formulation. However, in order to avoid this computationally de-
manding procedure, an updating criterion is discussed in the next
subsections, allowing to recalculate KT just when necessary to ensure
stability. Thus, KT may be computed at fewer time steps (or even just
once), enhancing the efficiency of the technique. An expression for the
time integration parameter a is also discussed in the next subsection,
enabling a calculation according to the properties of the model, ren-
dering a more accurate technique.

2.1. Stability analysis

In order to gain insight into the stability properties of the proposed
technique, linear analysis for a single degree of freedom (SDOF) model
is considered here [14,15]. This SDOF model is associated to the modal
analysis of the problem, taking into account its critical mode. Thus, in
this analogy, ≡K ωT

2, where ω represents the natural frequency of the
mode, ≡C ξω2 , where ξ represents the damping ratio, and ≡M 1. In
this context, if the nonlinear internal force term at the time instant tn is
represented as ′K U, the amplification matrix of the method can be
defined following standard approaches [15], and it can be stated as
indicated below, taking into account the proposed stabilized central
difference method:
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where its eigenvalues may be expressed as:
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If complex eigenvalues take place, i.e., if relation (7) is true,
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the spectral radius of the method can be established as:

=

+ + − ′ − − ′− ′

− ′ + ′
+ +

= +
+ +

ρ

M tC a t K t K t C MK tCK

a t K K t K
M tC a t K

M a t K
M a t K tC

(2 Δ 2 Δ Δ ) Δ ( 4 2Δ

4 Δ Δ )
(2 2Δ 2 Δ )

Δ
Δ Δ

T

T

T

T

T

2

2 2 2 2 2

2 2 2

2 2

2

2 (8)

which is less or equal 1, ensuring stability in the linear case (in fact,
<ρ 1 for ≠C 0, and =ρ 1 for =C 0; featuring a non-dissipative time

marching numerical approach). Thus, if relation (7) is followed, stable
results can be expected.

Taking into account an undamped model (i.e., C=0), which stands
for the most critical configuration for stability, and considering updated
values for KT (i.e., ≡ ′K KT ), an expression for a can be established to
ensure relation (7). Of course, in this context, relation (7) is easily
followed by adopting =a 1

4 . However, in order to obtain a more ac-
curate numerical technique, it is interesting to select lower values for a.
In this case, reduced period elongation errors will occur, and an en-
hanced technique will arise. In this work, the following expression is
adopted for a:
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which provides ∈ ( )a 0, 1
4 . In Eq. (9), ω stands for the maximal natural

frequency of the model (or an upper approximation of it), which is
computed from M and KT . Thus, the time integration parameter adapts
itself according to the evolution of the properties of the model.

In Fig. 1, = − − − −γ ξ ξ a( Ω) 1 ( 1/4)Ω2, which represents relation (7)
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