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A B S T R A C T

Axially functionally graded (AFG) beams, with variable coefficients in the governing equation, are a novel class
of composites structures that have continuous variations in material properties from one component to another.
In this paper, the asymptotic development method (ADM) is utilized to investigate the free vibration of uniform
AFG beams with different boundary conditions. By decomposing the variable flexural stiffness and mass per unit
length into reference invariant parts and variant parts, perturbation theory is introduced to obtain an approx-
imate formula of the natural frequencies of the uniform AFG beams. The numerical results of the proposed
method are confirmed by comparing the obtained results with those obtained via finite element analysis and the
published literature results, the comparison reveals the proposed method yields an accurate estimate of the first
three order natural frequencies of the AFG beam. Moreover, the influences of the gradient parameter and support
conditions on the first three natural frequencies are discussed. The proposed analytical method is simple and
efficient and can be used to conveniently analyze uniform AFG beams with arbitrary changes in the material
properties along the axial direction.

1. Introduction

Functionally graded materials (FGMs) are a novel class of compo-
sites that have continuous variations in material properties from one
component to another. Because of their promising mechanical and
thermal properties, FGMs are typically made into a variety of struc-
tures, such as beams [1], plates [2,3] and shells [4], and are widely
used in extreme engineering environments, particularly for gas turbine
and aerospace engineering. Moreover, the vibration of FGMs structures
has drawn considerable interest. For example, Lee et al. [5] developed
an exact transfer matrix method to analyze the free vibration char-
acteristics of FGMs beams where the material properties vary con-
tinuously along the thickness direction of the beam by a power-law
distribution. Sina et al. [6] considered a new beam theory different
from traditional first-order shear deformation beam theory to analyze
the free vibration of FGMs beams. Li et al. [7] applied higher-order
shear deformation theory to study the dynamic analysis of FGMs beams
subjected to various end conditions. Avcar and Alwan [8] employed
Rayleigh beam theory to research the free vibration of FGMs beams
with simply supported boundary conditions. Akgöz and Civalek [9]
investigated the buckling problem of linearly tapered cantilever micro-
columns of rectangular and circular cross-section on the basis of

modified strain gradient elasticity theory. Civalek [10] carried out the
buckling, bending, and free vibration analysis of plates and columns
using the harmonic differential quadrature and differential quadrature
methods. Jin et al. [11] used the Haar wavelet method to compute the
free vibration solutions of FGMs cylindrical shells with first-order shear
deformation theory. Zhao et al. [12,13] presented a method for
studying the free vibration of metal and ceramic functionally graded
plates and shells using the element-free kp-Ritz method. Chen and his
team [14–16] used the perturbation analysis method investigated the
nonlinear parametric vibration of axially accelerating viscoelastic
strings and beams.

It is difficult to obtain precise solutions for axially functionally
graded (AFG) beams because of the variable coefficients of the gov-
erning equation, therefore, several numerical methods have been used
to analyze the vibration characteristics of AFG beams. By assuming that
the material constituents vary throughout the longitudinal directions
according to a simple power law, Alshorbagy et al. [17] developed a
two-node, six-degree-of-freedom finite element method in conjunction
with Euler–Bernoulli beam theory to detect the free vibration char-
acteristics of a functionally graded beam. Shahba et al. [18,19] used the
finite element method to study the free vibration analysis of an AFG
tapered beam based on Euler–Bernoulli and Timoshenko beam theory.
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Shahba and Rajasekaran [20] studied the free vibration analysis of AFG
tapered Euler–Bernoulli beams using the differential transform element
method. Liu et al. [21] investigated the free vibration analysis of AFG
tapered Euler-Bernoulli Beams through the spline finite point method.

Alternatively, some researchers have used analytical or semi-ana-
lytical approaches to analyze the vibration characteristics of AFG
beams. Huang and Li [22] presented a novel and simple approach to
solve the natural frequencies of the free vibration of AFG beams. For
various end supports, the governing equation with varying coefficients
is transformed into Fredholm integral equations to determine the nat-
ural frequencies by requiring that the resulting Fredholm integral
equation has a non-trivial solution. Huang and Li [23,24] also proposed
an exact analytical method to investigate the vibration behaviors of
AFG beams with arbitrary axial gradients. Hein and Feklistova [25]
solved the vibration problems of AFG beams with various boundary
conditions and varying cross sections using the Haar wavelet series. Li
et al. [26,27] derived the exact frequency equations for the free vi-
bration of axially exponentially graded beams with various end con-
ditions based on Euler–Bernoulli and Timoshenko beam theory. Kukla
and Rychlewska [28] proposed a new approach to study the free vi-
bration analysis of an AFG beam, the approach relies on replacing
functions characterizing functionally graded beams with piecewise ex-
ponential functions. Sarkar and Ganguliand [29] assumed that the
material mass density, elastic modulus and shear modulus are simple
polynomial functions along the length of the beam and obtained a
fundamental closed form solution for the free vibration of AFG Ti-
moshenko beams with uniform cross sections. Xie et al. [30] presented
a spectral collocation approach based on integrated polynomials com-
bined with the domain decomposition technique for free vibration
analyses of beams with axially variable cross sections, modulus of
elasticity, and mass densities. Akgöz and Civalek [31] examined the
free vibrations of AFG tapered Euler–Bernoulli micro-beams based on
Bernoulli–Euler beam and modified couple stress theory. Zhao et al.
[32] introduced a new approach based on Chebyshev polynomial
theory to investigate the free vibration of AFG beams with non-uniform
cross sections.

The present study investigates the free vibration of AFG beams with
uniform cross sections using the asymptotic development method
(ADM). First, the governing differential equation for the free vibration
of a uniform AFG beam is summarized and rewritten in a form of a
dimensionless equation based on Euler–Bernoulli beam theory. By de-
composing the variable coefficients into reference invariant parts and
variant parts, the ADM is introduced to resolve the governing equation
and an approximate formula of the natural frequencies of the AFG
beams is obtained. Furthermore, the natural frequencies of a uniform
AFG beams made of alumina and zirconia are analyzed considering
different boundary configurations. The results are compared to those
obtained via finite element analysis and the published literature results
to validate the effectiveness of the ADM. The influences of the gradient
parameter and support conditions on the natural frequencies of the AFG
beams are also demonstrated and discussed. Finally, the conclusions are
presented.

2. Problem formulation

This study considers a beam with a uniform cross-section and made
of axially functionally graded materials. The beam length, width and
height are denoted as L, B and H, respectively, and with a coordinate
system (Oxyz) is shown in Fig. 1.

2.1. Functionally graded materials

In this paper, the material properties of the beam are assumed to
vary continuously in the axial direction according to the usual power-
law gradient assumption [22], so the material properties such as the
Young’s modulus E x( ) and mass density ρ x( ) along the beam axis are

given as follows:
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where YL and YR denote the corresponding material properties of the left
and right sides of the beam, respectively, and α is the gradient para-
meter describing the volume fraction change of both constituents in-
volved. The variation of Y x( ) along axis direction of the beam is shown
in Fig. 2 for =Y Y3 .R L

2.2. Governing differential equation

Based on Euler-Bernoulli beam theory, the governing differential
equation of the AFG beam can be written as
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where w x t( , ) is the transverse deflection at position x and time t; E x I( )
is the flexural stiffness, which depends on both Young’s modulus E x( )
and the area moment of inertia I ; and ρ x A( ) is the mass of the beam per
unit length, which depends on both the material mass density ρ x( ) and
cross-sectional area A.

For AFG beams, the flexural stiffness E x I( ) and mass ρ x A( ) both
vary, which makes it difficult to resolve the differential equation with
variable coefficients. Here, we introduce a reference flexural stiffness
E I0 and a reference mass per unit length ρ A0 , these quantities will be
presented and computed in Section 3. Let = +E x I E I E x I( ) ( )0 and

= +ρ x A ρ A ρ x A( ) ( )0 , where E I0 and ρ A0 are the invariant parts and
E x I( ) and ρ x A( ) are the variant parts of the bending stiffness and mass
per unit length, respectively. A non-dimensional equation is convenient
for computational purposes. By introducing the non-dimensional space
variable, defined by =ξ x L/ , and the non-dimensional time, defined by

=τ t
L
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, Eq. (2) can be rewritten in the non-dimensional form
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Section I-I

Fig. 1. The geometry and coordinate system of an AFG beam.

Fig. 2. Variation of the material properties defined by Eq. (1) with =Y Y3R L.
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