Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Surface tension and cohesive energy density of molten salts

CrossMark

Yizhak Marcus*

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

ARTICLE INFO

Article history: Received 18 June 2013 Received in revised form 19 August 2013 Accepted 20 August 2013 Available online 1 October 2013

Keywords: Molten salts Corresponding temperature Surface tension Cohesive energy Cohesive energy density

1. Introduction

The surface tensions σ of many molten salts have been compiled by Janz and coworkers [1,2] as functions of the temperature and the data have been supplemented subsequently in several other publications, e.g., [3,4]. The values diminish linearly with increasing temperatures and ought to be compared at a suitable "corresponding temperature" as suggested by Reiss et al. [5]. As such, a temperature $1.1T_m$, somewhat above the melting point T_m , has been suggested [5,6] and applied in several studies [7–10]. For alkali metal halides, excepting the lithium salts, the surface tension at that temperature was correlated with the cube of the melting point [5]. Other correlations of σ with some other properties of molten salts have also been proposed [11,12], but again for a limited set of salts.

In this paper it is shown that the surface tensions σ at $1.1T_{\rm m}$ of a large number of highly ionic molten salts of different types (1:1, 1:2, 2:1) correlate well with the cohesive energy densities *ced* of the salts, as far as such data could be ascertained. The rationale of this correlation is then briefly discussed.

2. The data

The corresponding temperatures, $1.1T_m$, the surface tensions, σ , and the cohesive energy densities, *ced*, of some 80 molten salts are listed in Table 1. The melting points T_m of the salts are generally

$A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

The surface tensions σ of a large number of molten salts are known as (decreasing) linear functions of the temperature. They may be compared at a so-called "corresponding temperature", of which $1.1T_m$ is a good choice (T_m /K is the melting temperature). It is shown that for highly ionic molten salts of the 1:1, 1:2, and 2:1 charge types σ is a linear function of the cohesive energy density, *ced*. Molten salts with pronounced partial covalent bonding have generally much smaller surface tension values than highly ionic ones having similar values of the *ced*. The correlation between σ and *ced* is rationalized and compared with correlations in the literature, but the latter pertain only to the alkali metal halides.

© 2013 Elsevier B.V. All rights reserved.

from the $t_m/^{\circ}C = T_m/K - 273$ listed in the Handbook of Chemistry and Physics [13]. Where not otherwise noted, the σ values are calculated from the linear coefficients of $\sigma = a - b(T/K)$ given in [1]. A few additional sources of surface tension data are indicated in Table 1.

The cohesive energies, *ce*, of molten salts have been reported in [10] for most of the 1:1 salts and in [14] for most of the 1:2 and 2:1 salts. They were calculated from Eq. (1):

$$ce = -U_L + (H_{298} - H_0) + (H_{1.1Tm} - H_{298}) - \nu R(1.1T_m)$$
(1)

which is shown schematically in Fig. 1. The lattice potential energies $-U_{\rm L}$ were from the compilation by Jenkins and Roobottom in [13]. Their relatively small corrections pertain to the raising of the temperature from 0K to 298.15 K as $(H_{298} - H_0)$ with data from [15], and from 298.15 K through the melting process to $1.1T_{\rm m}$ as $(H_{1.1Tm} - H_{298})$ with data from [16], and correcting from the enthalpies to the energies by $\nu R(1.1T_{\rm m})$, where ν is the number of ions per unit formula of the salt. It was noted that the corrections $(H_{298} - H_0) + (H_{1.1Tm} - H_{298})$ in those cases where they were available in [15] and [16] approximated $2\nu R(1.1T_{\rm m})$. Therefore, in the cases where $(H_{298} - H_0)$ and $(H_{1.1Tm} - H_{298})$ were not available the total correction could be estimated as $\nu R(1.1T_{\rm m})$, being $\leq 2\%$ of $-U_{\rm L}$. The cohesive energy densities, *ced*, are then obtained by division of the *ce* values by the molar volumes of the molten salts, $V(1.1T_{\rm m})$, obtained from [17].

In those cases where the $-U_L$ values were not available in [13], they were estimated according to Jenkins et al. [18] using the

^{*} Tel.: +972 2 6585341; fax: +972 2 6585341. *E-mail address:* ymarcus@vms.huji.ac.il

^{0040-6031/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tca.2013.08.018

Table 1

The corresponding temperatures, $1.1T_m$, the surface tensions, σ , from [1] unless otherwise noted, and the cohesive energy densities, *ced*, from [10,14] unless otherwise noted, of molten salts.

Salt	1.1 <i>T</i> _m (K)	σ (mJ m ⁻²)	ced (GPa)	Salt	1.1 <i>T</i> _m (K)	σ (mJ m ⁻²)	ced (GPa)
LiF	1232	241	64.6	MgF_2	1690	223 ⁱ	110.1
LiCl	971	131 ^b	28.4	MgCl ₂	1057	67 ^h	42.9
LiBr	902	123 ^e	20.9	CaF ₂	1860	284 ⁱ	82.7
LiI	816	91 ^e	15.5	CaCl ₂	1151	140 ^h	42.5
LiNO ₃	578	113	20.1	CaBr ₂	1103	115 ^h	26.1
LiClO ₃	441	85 ^h	16.0 ^{j,k}	Cal ₂	1163	83 ^h	22.6
Li ₂ CO ₃	1109	245	60.4	$Ca(NO_3)_2$	906	102 ^h	33.5 ^j
Li ₂ SO ₄	1245	225	38.4	SrF ₂	1925	268 ⁱ	67.0
Li ₂ MoO ₄	1076 ^a	214 ^d	32.4	SrCl ₂	1261	161 ^h	35.8
Li ₂ WO ₄	1117 ^a	217 ^d	32.2	SrBr ₂	1008	146 ^h	297
NaOH	656	151 ^f	36.2	SrIa	867	143 ^h	27.1
NaF	1395	189	39.4	$Sr(NO_2)_2$	966	128 ^h	27.4
NaCl	1181	106	177	BaFa	1805	221 ⁱ	53.7
NaBr	1122	93	14.6	BaCl ₂	1359	156 ^h	30.2
Nal	1026	80	10.8	BaBr ₂	1265	144 ^h	25.4
NaNOa	599	118	19.8	Bala	1114	130 ^h	22.1
NaNO ₂	638	116	15.3	$Ba(N\Omega_2)_2$	955	130 134 ^h	22.5
NaClO ₂	573	87 ^c	14.0	$7nCl_2$	650	54 ^h	46.6
NaRF.	749	84 ^m	11.0	ZnBra	734	50 ^h	39.9
Na ₂ CO-	1244	206	/1 2	CdCl-	025	84h	46.5
Na ₂ CO ₃	1273	185	2/0	CdBr-	923	64h	36.5
Na ₂ 304	1059	1900	24.5	DbCl	951	120	20.5
Na ₂ WO	1058	102	20.4	r DCl ₂ MgE-	1600	130	29.0
	1407	155	25.7	MgCl	1050	223 67h	110.1
Nd3AIF6	606	110	30.0 33.6	NIGCI2	1960	20/	42.9
KUH KE	1244	131	23.0		1151	204 140h	02.7 42 E
KI ^r	1244	01	12.3	CaCl ₂	1102	140 115h	42.5
KCI KBr	1104	91	12.2	CaDI ₂	1105	115" oph	20.1
KBI	1040	82	10.2		1103	83" 102h	22.0
KI	1049	/1	7.80	$Ca(INO_3)_2$	906	102"	26.4
KSUN	495	95	10.7	SIF ₂	1925	208 [.]	67.0
KNU2 KNIO	/61	103	14.1 ³	SFCI2	1201	101" 14Ch	35.8
KINU ₃	008	100	11.1	SIBI2	1008	140" 140b	29.7
KCIU ₃	043"	80"	11.3	SII_2	807	143" 120h	27.1
KBF4	927	/35	8.2	$SF(INO_3)_2$	966	128"	27.4
K ₂ CO ₃	1289	159	27.3	BaF ₂	1805	221 ⁴	53.7
K ₂ SO ₄	14/6	143	17.0	BaCl ₂	1359	156"	30.2
K ₂ M0O ₄	1311	142	20.5	BaBr ₂	1265	144 ⁿ	25.4
K_2WO_4	1314	148	27.9	Bal ₂	1114	130"	22.9
$K_2Cr_2O_7$	/38	139	13.3	$Ba(NO_3)_2$	955	134"	22.5
KDF	1217	118	18.6	LaCl ₃	1260	105 ⁴	54.6
RDCI	1087	91	11.0	PrCI ₃	1165	104	56.9
RDBr	1051	84	9.30	SmCl ₃	1051	93	57.2
RDI	1012	/5	7.40	ErCl ₃	1154	80'	61.2
RDNO ₃	641	105	10.1	YDCI3	1263	81	63.1
Rb ₂ SO ₄	1456	125	14.5	ZnCl ₂	650	54" 50b	46.6
CSF	10/4	100	15.6	ZnBr ₂	/34	50 th	39.9
CsCl	1011	85	9.49	CdCl ₂	925	84"	46.5
CsBr	1000	77	8.01	CdBr ₂	924	64 ⁿ	36.5
Csl	989	69	6.30	HgCl ₂	605	56",0	41.4
CsNO ₃	756	87	8.05	HgBr ₂	565	58 ⁿ	36.0
Cs ₂ CO ₃	1173	128 ^e	20.1 ^J	SnCl ₂	572	110 ⁿ	40.7
Cs ₂ SO ₄	1406	112 ^e	9.7	PbCl ₂	851	138 ⁿ	29.6
AgCl	801	176 ⁿ	53.7	GaCl ₃	386	24 ⁿ	58.8 ^j
AgBr	778	152 ⁿ	29.2	BiCl ₃	556	65 ⁿ	57.4
AgNO ₃	534	146	17.7	BiBr ₃	540	69 ^{n,p}	34.1
TINO3	531	90	12.3 ^j				

^a The melting points are from [28].

^a The r ^b [5]. ^c [29]. ^d [30]. ^e [4]. ^f [31]. ^g [32]. ^b [3]

^h [2]

ⁱ [33], estimated at $T_{\rm m}$ from the scaled particle theory.

^j See the text for the evaluation of these *ced* values.

^k [20].

¹ [23].

^p The temperature coefficient -0.872 given in [2] is obviously a misprint, leading to negative values of σ ; -0.072 yields a reasonable value commensurate with that of BiCl₃.

^q From [34], extrapolated to pure molten LaCl₃.

r [35].

Download English Version:

https://daneshyari.com/en/article/673567

Download Persian Version:

https://daneshyari.com/article/673567

Daneshyari.com