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A B S T R A C T

From the early days of finite element analysis the numerical static condensation method has been applied to
elements with internal nodes to reduce their memory requirements and to simplify their assembly. The static
condensation method was first used by Wilson (1965) to eliminate the internal degrees of freedom in a quad-
rilateral finite element constructed from four triangles. This study applies modern symbolic analysis software to
static condensation to reveal additional observations about its benefits and efficiency. It is shown that the
stiffness matrix and force vector transformation matrices can be written in closed form for a given element type
and used for more efficient post-processing. In addition, it is shown that the classic cubic beam and linear bar
element matrices are the symbolic static condensation versions of the three node quintic beam and quadratic bar,
respectively. That allows the cubic beam element to be easily post-processed to give cubic moment and quadratic
moment and shear diagrams, respectively.

1. Introduction

The classic cubic beam and frame finite element is used in most of
the software for beam and frame analysis despite the fact that it gives
very poor estimates of the distribution of the moment and shear, which
are important design factors. The practical approach to overcoming that
flaw has been to divide each frame or beam span into forty of fifty cubic
elements. In most common support and load cases a single quintic beam
element will give the exact thin beam theory solution for deflection,
slope, moment, and shear over the length of the same span. Yet, the
quintic beam element is not commonly used. That may be simply due to
the cubic beam being programmed first and/or the inconvenience of
inputting three nodes instead of two.

It will be shown below that the two node classic beam element is the
symbolic static condensation of the three node quintic beam element.
After the system displacements of a cubic beam structure have been
found the symbolic static condensation transformation matrices can be
used expanding its four degrees of freedom to the six degrees of
freedom of the quintic beam element. That enhances the accuracy of
post-processing each beam element by allowing plots of fifth-degree
displacements, cubic moment diagrams and quadratic shear force dia-
grams. That also means that spans between discontinuities in loads or
stiffness can be modelled by a single classic beam instead of dozens.

2. Material and methods

The cubic and quintic for formulating beam and frame elements
have appeared in the literature several times, for example: [1,2,3]. The
elastic stiffness, geometric stiffness, elastic foundation stiffness, line
load resultant, thermal (through depth) load matrices give an element
matrix equilibrium equation of the cubic element as:
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where L=beam length, E=elastic modulus, I=moment of inertia,
N=the axial load (positive in tension), k= the Winkler elastic foun-
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dation stiffness, fk= line load value at node k, α= the coefficient of
thermal expansion, ΔT=the linear increase in temperature from the
bottom to the top of the beam, t=the depth of the beam, Vk=the
external transverse shear force at node k, Mk=the external bending
couple at node k, and the generalized displacements of the cubic ele-
ment’s degrees of freedom are =δ v θ v θ[ ]e

1 1 2 2
T .

The corresponding matrix relation for the three-node quintic, six
degree of freedom, beam element have been given in a number of re-
ferences, including [2,3]:
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3. Theory

The static condensation algorithm of Professor Ed Wilson [4,5] is
well known. The above Wilson static matrix equilibrium equation for an
element: [KE+KN+Kk]δ={FP+ Ff+ FT}, or Kδ= F can be written
in a partitioned form to separate internal and external degrees of
freedom. The first seven equations of reference [5] are re-written for
this study as:
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where δa indicates the internal degrees of freedom to be eliminated and
δb indicates the external (end) degrees of freedom that are associated
with the reduced stiffness matrix (K∗). The upper partition gives

= −−δ K F K δ{ }.a aa a ab b
1

So the lower partition becomes

= − = − −−K δ F K δ F K K F K δ{ }bb b b ba a b ba aa a ab b
1

or

− = −− −K K K K δ F K K F[ ] { }bb ba aa ab b b ba aa a
1 1

this defines the reduced element equilibrium equation as

=∗ ∗K δ F .b (4)

Changing the Wilson notation slightly, this process defines a square
work matrix, a rectangular transformation matrix, and a column
transformation matrix of

≡ ≡ ≡−W K T WK T WF, , ,aa k ab F a
1 (5)

respectively, to denote the reduced system matrices as

= − = −∗ ∗K K K T F F K T, .bb ba k b ba F (6)

Also, the first partition is expressed in terms of the transformations
as

= −δ T T δ .a F k b (7)

Eqs. (5) and (6) are well suited for both symbolic and numerical
calculation of the reduced element matrices. Wilson also gives an
equation for recovering element stresses but notes “… in the case where
a large number of stresses are required, it may be more efficient … to
re-calculate the internal displacements” δa “from the equivalent of
equation”, which is Eq. (7). That approach is utilized here.

A reformatted numerical static condensation algorithm (see the
Matlab script in Appendix A) returns (or preferably stores) the two
transformation matrices as well as the reduced element matrices. After
the solution of the assembled system equations the element displace-
ments, δb, are gathered and the eliminated internal degrees of freedom,
δa, are recovered from Eq. (7) using the two element transformation
matrices. An algorithm to numerically recover the internal degrees of
freedom is shown in Appendix B.

Today, it is practical to execute the static condensation, for any
element, using symbolic software to complete the algebra operations.
Applying the above static condensation symbolically to the analytic
expression for the quintic elastic stiffness matrix surprisingly gives the
exact analytic expression for the well-known cubic beam element
elastic stiffness in Eq. (1). Applying the above static condensation
symbolically to the analytic expression for the quintic element resultant
trapezoidal line load (with w2= (w1+w3)/2) in Eq. (2) gives the exact
analytic expression for the cubic beam element resultant trapezoidal
line load in Eq. (1). Likewise, applying the above static condensation
symbolically to the analytic expression for the quintic element thermal
load resultant in Eq. (2) gives the exact analytic expression for the cubic
beam element thermal load resultant in Eq. (1). Tong’s Theorem [6]
shows that the cubic element will give analytically exact nodal solu-
tions when there is no axial load and no elastic foundation. Thus, the
above symbolic condensations imply that the recovery of the eliminated
internal node degrees of freedom may also prove to be exact, but they at
least expected to be accurate. The generated condensation matrices for
the three-node beam were
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The first to matrices are the same for any quintic beam, but the last
one is only valid for a trapezoid line load. For other load cases it is
simply Tf=WFa where the element load vector segment Fa was ob-
tained by numerical integration or symbolic integration.
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