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A B S T R A C T

The stiffened pipe structure is analyzed by using a pipe element with variable cross-section. The pipe element
uses a much less number of DOF (degree-of-freedom) and it has exactly smooth configuration and high order
solution of displacement. The Consistent Orthogonal Basis Function Space is applied to define the pipe’s dis-
placement basis functions. The nonlinear finite element implementation details are also presented for the
completeness of the method.

The stiffened pipe collapse problem and the buckling propagation problem are both solved. The numerical
results are compared and verified with ANSYS. It is observed that the stiffness can be largely increased by using
stiffeners on pipes. The number of DOF is also compared between the proposed method and ANSYS. The post
buckling profile of the stiffened pipe is obtained. The maximum and minimum buckling propagation pressure are
calculated. The design based on buckling collapse and buckling propagation are discussed.

1. Introduction

Pipe structures have been applied in many engineering fields.
Relative research work is reviewed here. The variable thickness pipe
element and the static/dynamical buckling analysis are developed in
[1,2]. In these two papers, the problems of pipe buckling cross-over and
dynamical buckling propagation are solved, respectively. In [1], the
proposed pipe element is used to simulate the pipeline with integral
arrestors. The critical cross-over pressure is calculated. In [2], the pipe
element is generalized to dynamical case. For all these problems,
nonlinear finite element for the large deformation and finite strain
analysis are considered. For the nonlinear finite element background, it
is referred to the book [3]. In this book, the nonlinear FEM (finite
element method) equations are comprehensively derived. The plastic
constitutive code is developed based on the algorithm in [4], from
which the return-mapping algorithm is used.

In [5], the research history of pipe finite element is presented. In
[6,7], an elbow pipe finite element is developed for linear and non-
linear analysis. The axial line of the pipe can be a curve. It could be used
to the connection of two pipes. Comparing to this paper’s method, the
limitation of [6,7] are:

(1) The cross-section of pipes could only be a perfect circle, while in

this paper, the cross-section could be any shape.
(2) Ref. [6] is a linear pipe element, and [7] only considers few geo-

metrical nonlinearity.
(3) Refs. [6,7] only considers bending behavior, while this paper in-

cludes all the deformation (bending, membrane, shear, extension,
compression etc).

The beam element with a deformable cross-section is developed in
[8]. In [8], the pipe element is based on beam theory in axial direction
and a 3-D warping displacement based on solid elements. It is also able
to represent any shape of cross-section since a tradition 2-D mesh is
used for cross-sections. However, comparing to this paper, it must use a
much more number of degree-of-freedom for each cross-sections.

In [9], the bending pipe element is developed. In this paper, it is
based on Von Karman ovalisation. However, only thin-walled pipe is
analyzable. Linear elastic analysis is only considered in [9]. The ANSYS
analysis of pipe under pressure is given in [10]. In [11], the ovality and
thickness are studied for the analysis of buckling collapse based on
traditional FEM package. The stiffened plate under compression is
studied in [12]. The super element is used and nonlinear strain due to
transverse deflection is considered. A linear Timoshenko beam theory is
used, such that only thin-walled stiffener is analyzable. In [13], the
ANSYS is applied to analyze the problem of cylinder shell buckling. The
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vibration of a variable thickness shell is analyzed in [14]. Donnel-
Mushtari conical shell theory is used and the Ritz method is applied to
calculate the strain energy. In [15], the elbow pipe under internal
pressure is studied. The key contribution of [15] is the elaplastic model
for the elbow pipe. An analytical solution of the limit load is obtained.
Linear problem is considered. In [16], the bending buckling analysis of
straight pipe and curved pipe is presented. In [17], the composite
structure with curved stiffeners is focused and the optimization based
on buckling analysis is discussed. In [18], the stiffened shell buckling
sensitivity to geometrical imperfection is studied. In [19,20], the pipe
element is generalized into curved pipe and laminated pipe. In [19], the
axial line of pipe can be any 3-D space curve. Also, the cross-section is
still arbitrary and variable along the curved pipe’s axial line. In [20],
the laminated pipe element is developed. The cross-section can have
many layers with different materials and the interface stress can be
calculated directly. In [21], the buckling propagation of pipe-in-pipe is
studied. The pipe-in-pipe system is applied to mitigate the vibration in
[22], where a finite element analysis and a simplified TMD model are
presented. In [23], a novel contact/impact algorithm is developed for
the pipe-in-pipe structure. The location of contact/impact between the
inner pipe and the outer pipe can be determined directly based on the
deformed pipe’s arc length.

In this paper, the stiffened pipe structure is analyzed by using a pipe
element with arbitrary variable cross-section. The method can be used
to analyze any pipes with any shape of cross-section and the cross-
section can be variable along the pipeline. In this case, it has wide
applications. The number of DOF is also much less comparing to tra-
ditional finite element method (FEM). The configuration of the pipe
structure can be also represented exactly and accurately.

By using this method, the stiffened pipe buckling problem is studied
in this paper. Comparing to the previous work in this field, this paper
firstly studies the relation between geometrical parameters of stiffened
pipes (ribs thickness, ribs distance, etc.) and strength/stability of the
stiffened pipe structure systematically.

The outline of the paper is given. In Section 2, the kinematics of the
stiffened pipe is discussed. In Section 3, the Consistent Orthogonal Basis
Function Space is presented. In Section 4, the nonlinear finite element
implementation details are given. In Section 5, the numerical tests are
presented. In Section 6, the conclusion is given.

2. Kinematics

In this section, the kinematics of the variable cross-section pipe is
established. This pipe element is used in this paper to analyze the
stiffened pipe problem. The key idea of pipe element is to set a mapping
between a perfect cylinder space to a torsional body space with arbi-
trary variable cross-section. Then, the natural coordinate system is
defined in the perfect cylinder space, and the material coordinates for
the torsional body with arbitrary variable cross-section can be re-
presented.

The natural coordinate system ξ1, ξ2, ξ3 is shown in Fig. 1 [1,2].
In Fig. 1, ρ, θ, z are the commonly-used cylindrical coordinates, and

ξ1, ξ2, ξ3 are the natural coordinates, as defined in (Eq. (1a,b,c)).
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where L is the total length of the pipe in the axial direction. ′O is the
origin of the cylindrical coordinate system ρ, θ, z as seen in Fig. 1, ′ ″O O
is the z-axis, O is the origin point of the ξ1, ξ2, ξ3 coordinate system, ′OO
is the distance between the origin point of the cylindrical coordinate
system ρ, θ, z and the inner surface of the pipe. ′PO is perpendicular to

′OO , and P belongs to the outer surface of pipe.
It should be noted that the wall thickness tw can be a function of ξ1,

ξ2. ′O can be placed at any point within the body of the structure, but

the formulation of ′ =OO R ξ ξ( , )1 2 will be adjusted correspondingly. The
definition of =R R ξ ξ( , )1 2 is the distance between the origin point ′O
and the pipe’s internal surface, as shown in Fig. 2. The function

=R R ξ ξ( , )1 2 can be dependent on axial direction =ξ z L/1 and cir-
cumferential direction =ξ θ π2 /2 . Similarly, the distance between the
origin point ′O and the outer surface of the pipe can be also a function of
ξ ξ( , )1 2 , which is denoted as ′ = ′R R ξ ξ( , )1 2 , as seen in Fig. 2. Thus, the
definition of =t t ξ ξ( , )w w 1 2 is = ′−t R Rw , which is also a function of
ξ ξ( , )1 2 .

The displacement expression of the pipe element is given in (Eq.
(2a,b,c)). The element displacement is defined based on the natural
coordinates ξ1, ξ2, ξ3 as:
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where u1, u2, u3 are denoted as the axial, circumferential and radial
displacement, respectively; ξ1, ξ2, ξ3 are the dimensionless cylindrical
coordinates defined in Fig. 1 and Eq. (1); m0, n0, k0 are the displacement
order for ξ1, ξ2, ξ3, respectively; R0 is a referential radius that is used to
non-dimensionalize the degree-of-freedom; ϕui, =i 1, 2, 3 is the La-
grangian interpolation function about axial natural coordinate ξ1 for ui,

=i 1, 2, 3; ψ ξ( )u 2i , φ ξ( )u 3i are the displacement basis function about
circumferential coordinate ξ2 and radial coordinate ξ3, respectively, for
ui, the specific formulation of ψ ξ( )u 2i , φ ξ( )u 3i will be discussed later in
Section 3; Amnk, Bmnk, Cmnk are the undetermined coefficients of the

displacement expression, which is the DOF (degree-of-freedom); fu
ξ
i
j is

the displacement boundary condition function, which is used to define
the displacement boundary condition about the natural coordinate ξj for
ui. If there is no displacement boundary condition about the cir-
cumferential coordinate, it will be defined as 1.

In the axial direction, since the Lagrangian interpolation function is
used, the displacement compatible condition must be satisfied. For the
two adjacent pipe elements denoted as element i and element +i 1, the
displacement continuity condition is satisfied by reinforcing (Eq.
(3a,b,c)).
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Eq. (3a,b,c) means that Amnk, Bmnk, Cmnk of element i for which =m m0
must be equal to Amnk, Bmnk, Cmnk of element +i 1 for which =m 1
individually.

For element i, Amnk, Bmnk, =C m m( )mnk 0 refer to the degrees at the
mth Lagrangian interpolation point in the axial direction. For element

+i 1, Amnk, Bmnk, =C m( 1)mnk refer to the degrees at the first
Lagrangian interpolation point in the axial direction. Once Eq. (3ac) are
satisfied, the compatibility condition between adjacent pipe elements
will be satisfied. For the radial and circumferential direction, high order
orthogonal polynomials will be used to define the displacement glob-
ally. So there is no need to address compatibility problem.

For the ith element, the configuration of the pipe element can be
formulated as:
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