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A B S T R A C T

Flat mesh structures are used in a wide variety of applications. In particular, meshes with a rhombic unit cell are
frequently employed due to their simplicity and relative ease of manufacture. This paper studies the in-plane
elastic properties of such a structure as a function of the geometrical parameters by means of homogenisation
techniques. We compare predicted elastic in-plane properties (i) including only bending mode of the struts, cf.
Gibson-Ashby model, (ii) including both bending and stretching modes of the struts, obtained by homogenisation
using beam elements and (iii) by homogenisation using beam-spring elements accounting additionally for strut
joint deformation, and (iv) numerical results of elastic properties obtained by homogenisation using solid ele-
ments. The expressions of the predicted elastic properties are presented in analytical form. The homogenised
elastic properties accounting for both bending and stretching matches very well with those from the model
including only bending. The axial deformation of struts thus has negligible impact on the overall elastic beha-
viour. The complex deformation in the strut joint was also captured in the homogenised using beam-spring
elements, and the results agree better with the solid element results. It is concluded that a finite-element-based
homogenisation approach could serve as a straightforward analytical method to obtain elastic properties of mesh
structures. This approach automatically includes all deformation mechanisms as opposed to the classical unit cell
analyses of bending beams.

1. Introduction

Two-dimensional mesh structures, such as lattice truss materials
composed of periodic unit cells, possess some useful properties like high
stiffness-weight and high strength-weight ratios [1,2]. Moreover, the
regularity of mesh structures enables efficient manufacturing processes
at lower costs compared to more complex and irregular structures. With
the development of improved manufacturing technologies they are
becoming more widely used in the fields of civil engineering [3,4],
aeronautical engineering [1,2], additive manufacturing [5], and even in
medical applications [6,7] and photo-electronic devices [8]. For ex-
ample, a comprehensive study has been carried out to develop a com-
plete application of using expanded metal panels to upgrade reinforced
concrete moment resisting frames under seismic actions [4]. Crest-to-
crest wave springs [9,10], which consist of periodic cells, have been
developed as an alternative to normal compression springs. Tubular
implants with a coupled helical coil structure [11] and mesh-structured
stents [12] have been manufactured with the eventual aim to replace
the abnormal tubular organs in human body. To make use of the

mechanical advantages of mesh structures, it is essential to characterize
and understand their structural properties. Considering the regularity
and relative simplicity of mesh structures, one could expect that it is
possible to derive analytical expressions for the structural properties,
especially for elastic properties, which have the advantage of expedient
parametric investigations in the design process compared with more
detailed numerical approaches.

For most mesh structures, the mechanical properties could be de-
rived based on the periodicity of the structure. The methods that are
most frequently employed are analytical and computational homo-
genisation. A considerable number of studies were carried out to predict
the equivalent elastic properties of periodic mesh structures, e.g. hon-
eycomb structure e.g. [13–17], grid and lattice structures e.g. [18–20],
and beam-like structures e.g. [21,22]. However, to our knowledge,
there is still a lack of analytical studies presenting the closed-form so-
lution and its application window on the effective elastic properties of
mesh structures with a rhombic cell. This structure is shown in
Fig. 1(a), which can be regarded as two sets of an infinite number
equidistant parallel beams fused together at the intersections. Though
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meshes like isogrid or diamond lattices have superior properties, it is
emphasized that the simplicity of rhombic meshes makes them easier to
manufacture and cost efficient compared with more complex mesh
structures. For instance, since the struts are aligned in adjacent unit
cells, continuous filaments can readily be used in manufacturing pro-
cess, such as in filament winding [11]. Comprehensive studies re-
garding expanded metal panels, one type of rhombic mesh structure,
have been carried out both theoretically and experimentally in [4], and
the focus was mainly on the shear behaviours under both monotonic
and cyclic loadings. An important study on analytical homogenisation
of elastic meshes has been presented by Hohe et al. [19]. Their
homogenisation method is likewise based on energy equivalence for
beam elements considering the periodicity of certain meshes. In the
present work, we specifically address rhombic meshes (frequent in
applications) and compare the results with a full 3D solid element so-
lution as an accurate reference. The boundary conditions are periodic,
which is considered more realistic than assuming a homogeneous strain
field. Furthermore, the effect of the non-negligible joint volume is also
taken into account.

Given increased use of mesh structures, it is of interest to develop
and compare different ways to efficiently estimate engineering elastic
properties which are more convenient than full finite-element solutions.
The comparisons should then include the limitations of different

methods and which underlying deformation mechanisms are more
important than others for accurate predictions. These engineering in-
centives have prompted the present investigation.

In present work, four methods: (i) a beam bending model, (ii) a
more straightforward closed-form solution from beam element homo-
genisation, (iii) a similar implicit solution from beam-spring element
homogenisation, and (iv) a more realistic solution from solid element
homogenisation were developed, with the aim of finding an equivalent
continuum description of a mesh structure with a rhombic re-
presentative volume element (RVE) and showing the application
window of homogenisation method through comparison. Despite a two-
dimensional analysis, we employ the conventionally used term RVE,
since the rhombic mesh can be extruded into a third direction, forming
e.g. a sandwich core material with a rhombic cross section. Analytical
expressions of the effective elastic properties were obtained by the
homogenisation method and the complex deformation of the strut joint
in the RVE was approximately captured in the analytical approach.

This work is organized as follows. In Section 2 the geometry of the
RVE, shown in Fig. 1(b), and boundary conditions for homogenisation
are introduced. Then, four different approaches are developed for the
homogenisation of the rhombic RVE. Section 3.1 analyses the rhombic
RVE using Euler-Bernoulli beams, which neglects the axial deformation
of the struts. In Section 3.2, the RVE composed of beam elements is
homogenised using computational homogenisation, where beams also
account for axial deformation. Analytical formulas for the effective
elastic properties of the equivalent continuum are obtained. In Section
3.3, a more detailed RVE composed of beam and spring elements, ac-
counting also for strut joint deformation, is homogenised analogously.
Implicit expressions for the associated effective elastic properties are
determined as well. Subsequently in Section 3.4, computational
homogenisation is implemented again with a RVE using realistic solid
elements. Effects of triaxial stresses are then included, which are ex-
pected in the joints. The influences of geometrical parameters of the
mesh structure on the effective elastic properties are parametrically
investigated in Section 4 for the four homogenisation methods. It is
shown that the proposed homogenisation procedure is versatile in the
sense that it can be applied to arbitrary RVEs, and that analytical ex-
pressions can be straightforwardly obtained where axial deformation of
the beams and triaxial deformation of the strut joint are included.
Practical issues of stiffness design are also addressed, e.g. by controlling
strut cross-section, distance between joints, intersection angles etc. in

Nomenclature

a ratio of strut diameter to length (=D/L)
A matrix in beam-spring element homogenisation
C effective stiffness matrix of mesh structure
D cross-sectional diameter of struts
E Elastic modulus
F force on strut associated with the applied stresses
G shear modulus
I area moment of inertia of struts (= πD /644 )
I second order unit tensor
K stiffness matrix of RVE
L strut length in rhombic RVE
M matrix composing the matrix C of beam-spring element

homogenisation
M moment on strut associated with the applied stresses
n unit normal vector of the RVE boundary
P total nodal force vector of RVE
u displacement vector of RVE points
U total nodal displacement vector of RVE
V volume of the RVE
Γ boundary of the RVE

X position vector of RVE points in the reference configura-
tion

x position vector of RVE points in the deformed configura-
tion

α l h b, , , geometrical parameters of honeycomb RVE
φ intersection angle between struts
v Poisson ratio
σ , τ stress
ε, γ strain
δ end deflection of strut

Superscripts

+, − corresponding nodes on opposing boundaries of RVE
i node number in the RVE model

Subscripts

M macroscopic quantities
m microscopic quantities
1 longitudinal
2 transverse

Fig. 1. Schematic illustrations of (a) the periodic mesh structure, and (b) the
geometry of the RVE. The solid lines delineate the mesh structure, and the
dashed black lines RVE boundaries.
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