
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Restraining requirements for lateral elastic-plastic buckling of columns
accounting for random imperfections

Chao Doua,b,⁎, Yong-Lin Pic, Wei Gaoc

a School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
b Beijing’s Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing 100044, PR China
c School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia

A R T I C L E I N F O

Keywords:
Lateral restraint
Full restraining
Restraint stiffness
Restraint force
Imperfections
Random analysis
Probabilistic

A B S T R A C T

This paper dealt with the restraint stiffness and strength requirements for axially loaded columns with lateral
restraints, accounting for inelastic flexural buckling and random imperfections. Firstly, the buckling behaviour
of restrained columns with classic deterministic imperfections was discussed to verify the effect of section di-
mensions, material properties and imperfection shapes. Then by using probabilistic distribution of imperfections
along the column, extensive numerical results were gained through random imperfection finite element analyses,
followed by restraint stiffness and restraint force proposed statistically corresponding to full restraining for
columns. Results showed that, the full restraining stiffness of perfect columns proposed by Winter is sufficient for
columns with imperfections and inelastic buckling. The traditional approach with predetermined artificial im-
perfections is deficient to evaluate the restraint force properly and rationally, due to ignoring the effect of
random imperfections.

1. Introduction

Lateral restraints are adopted to increase the flexural buckling
strength of columns about the weak axis. To be effective, ‘full re-
straining’ is desired and defined as the load-carrying capacity of the
restrained column achieves the buckling strength of the column seg-
ment between restraining points [1,2]. In practical design to achieve
full restraining, adequate restraint stiffness and restraint strength to
withstand the reacting force should be satisfied [1–4].

Extensive investigations have been conducted into elastic buckling
of laterally restrained columns by using analytical approaches [1–11].
Winter [2] developed a simplified rigid link model with fictitious hinges
and proposed equations for the restraining requirements, which became
the foundation of later studies and design codes [3–13]. However, in
practical design, due to increasing of stability by lateral restraints, a
restrained column usually buckles in inelastic range, thus the state of
material is altered and the derivations based on elastic buckling theory
may not be applicable. However, studies related to inelastic buckling of
restrained columns are lacking. Winter [2] stated that the proposed
equations can be directly applied to inelastic columns. In contrast to
Winter’s model with fictitious hinges, Pincus [13] introduced a rota-
tional spring at the restraining point and found that the full restraining
stiffness by Winter [2] was insufficient for inelastic buckling columns.

Gil and Yura [14] concluded that the full restraining stiffness was in-
dependent on the state of material elasto-plasticity. Thus it can be seen
that, while restraining requirements for elastic columns are well ex-
plained, those have not been fully developed for inelastic columns with
lateral restraints. It has not been verified whether the elastic conclusion
can be applied in inelastic buckling of restrained columns.

The other important issue is the significant effect of imperfections
on the restraining requirements for columns with lateral restraints.
Winter [2] incorporated artificial zigzag-shaped imperfections for re-
strained columns based on the fictitious hinge model. Plaut and Yang
[8] and Plaut [9] adopted the buckling mode as imperfections for re-
strained columns. In the finite element analyses (FEA) by Gil and Yura
[14], imperfections were assumed as a symmetric one wave, an anti-
symmetric double wave, and a nonsymmetric double wave respectively,
where results showed that buckling of restrained columns was very
sensitive to imperfection shapes.

Geometric imperfections of steel structures originated from manu-
facturing and erection are essentially stochastic in nature [15–22]. To
accounting for random geometric imperfections, large amount of data
from site measurement is need, and based on random field theory the
random imperfections can be modeled, as indicated by Kala et al. [21]
and Xi et al. [22]. However, in the previous studies on restrained col-
umns, random imperfections have hardly been considered and
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imperfections were mostly defined artificially as one specified de-
terministic shape, either sine waves or buckling modes. This simplified
treatment might not reflect the effect of random imperfections in real
columns, thus would lead to unconvincing results for the restraining
requirements [15–23].

In the study of Dou and Pi [23], the effects of geometric imperfec-
tions of axially loaded columns with lateral restraints were investigated
on flexural inelastic buckling resistance, and a simplified way forming
the critical geometric imperfection in FEA was proposed leading to
rational results for buckling resistances. However, it did not answer the
question how to determine the restraint stiffness and force in design for
columns in inelastic buckling and with random imperfections.

Therefore, the aim and significance of this paper is to investigate the
restraining requirements for laterally restrained columns, accounting
for inelastic buckling and random imperfections by using finite element
analyses, to provide rational evaluations on the full restraining stiffness
and restraint force in practical application. Firstly, the effect of various
factors on buckling of restrained columns is considered, namely the
section dimensions, material inelastic constitutive relations and the
imperfection shapes. Then based on the measured probabilistic dis-
tribution of imperfections, random numerical analyses are conducted
dealing with uncertainties of imperfections in columns, and the

statistical results for restraint force are obtained and discussed.

2. Scope and finite element model

Since the sectional bending rigidities of I-sectional columns about
two major axes are quite different, the flexural buckling load about the
weak axis needs to be enhanced by arranging lateral restraints. I-sec-
tional hinged columns with discrete lateral restraints under axial
loading are concerned in this paper, as shown in Fig. 1. The lateral
restraints are equally spaced and assumed elastic with the same spring
stiffness k, and the column material is elasto-plastic.

It is worth noting that, lateral restraints are usually set along the
direction perpendicular to the weak axis of cross-section (z-axis), to
increase the flexural buckling load about z-axis until it is close to the
buckling load about the strong axis o-y. Thus, the restraint requirement
related to the flexural buckling about the weak axis is considered,
which is the fact in practical engineering design. Only the imperfections
and flexural buckling along y-axis are concerned.

Finite element package ANSYS R13.0 [24] is adopted in flexural
buckling analyses of restrained columns, with elasto-plastic non-
linearity, large deformation and imperfections all taken into account.
The column is modeled with three-dimensional finite-strain beam

Nomenclature

A area of cross-section
b width of an I-section
E steel modulus of elasticity
Et hardening modulus of steel material
FR restraint force
FR95 restraint force corresponding to full restraining with 95%

guaranteed rate based on random analyses
fy steel yield stress
G steel shear modulus of elasticity
h overall height of an I-section
k restraint stiffness
kie full restraining stiffness for elastic columns without im-

perfections, from Winter’s theory
kiu full restraining stiffness for elastic-plastic columns without

imperfections, from Winter’s theory
L entire length of the restrained column

l length of column segments between restraining points
n number of lateral restraints
P compression load on columns
Pel Euler critical load for the individual column segment with

length l
Pu inelastic buckling strength of the entire column with lat-

eral restraints
Pul inelastic buckling strength for the individual column seg-

ment with length lfull restraining strength of the re-
strained column

tf flange thickness of an I-section
tw web thickness of an I-section
Δi additional deflection at the ith restraining point under

loading
[Δ] permitted imperfections tolerance
λz0 slenderness of the column segment between restraining

points

(a) Analytical model (b) User-defined section and residual stresses 
Fig. 1. Axially loaded columns with n lateral restraints.
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