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ARTICLE INFO ABSTRACT

Keywords: The standard hot-rolled sections with various shapes are used to construct the skeletal structural system of the
Beam-column steel civil engineering structures. The conventional design rules direct the engineer to select the smallest section
Design from the manufacturers’ catalog that satisfies the considered constraints. However, use of these predesigned
Opﬁmizat'io‘_’ sections may result in waste of structural material. This problem can be handled by searching for optimal built-
ﬁiﬁ};:;msms up section designs, which can be manufactured by cutting the plates to the determined dimensions and welding

them to each other so as to form the optimized shape. This paper presents the optimal design of prismatic I-
section beam-columns under stress, non-linear deflection and global buckling constraints with one of the recent
metaheuristic algorithms and discusses the influence of variable grouping on the optimization results. Four
optimization types are introduced and the contribution of using optimized shapes instead of hot-rolled sections
to the structural material economy is demonstrated over numerical examples. It is shown that optimization may
lead up to 23% lighter solutions than the hot-rolled sections and it is possible to obtain adequately efficient

doubly-symmetric I-section designs (in terms of material amount used) from an engineering point of view.

1. Introduction

Beams are the structural frame elements that are subjected mostly to
bending. On the other hand, columns are predominantly under com-
pression. The members that are subjected to non-negligible compres-
sion and bending are called beam-columns. Note that this combined
loading case of axial compression and bending may be produced by an
eccentrically applied load in the direction of the longitudinal axis or
combination of concentrically applied axial load(s) and transversal load
(s) and/or concentrated moment(s). The conventional design practice
for these members is to use the smallest standard section that meets the
structural requirements such as mechanical constraints (stress, deflec-
tion, etc.) and geometric suitability. The standard hot-rolled sections
can be found in the market in various shapes such as I, T and U with
different names in different countries.

The search for the optimal shapes of bars under various loading
conditions has a relatively long history compared to many other en-
gineering optimization problems. The works of Keller [1], Taylor [2]
and Simitses et al. [3] on columns are the earlier works on the opti-
mization of bars. Concerning beam-columns, Karihaloo and Parbery
wrote a set of articles on the optimum design of these members between
the years 1979 and 1983 [4-6]. These articles deal with minimizing the
transverse deflection of the simply supported [4] and cantilever [5,6]
members. In addition, they presented the optimum design of the pin
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ended members that have to serve as a beam for a part of their life and
as a column for the rest [7,8]. In these papers, constraints of the opti-
mization problems are the deflection in beam and the Euler buckling
load in column mechanisms. The paper by Kanagasundaram and Kar-
ihaloo presents the optimal design of beam-columns under stress con-
straints [9]. Finally, Karihaloo as sole author wrote two papers on
minimum weight design of the beam-columns with deflection con-
straints [10,11]. In the last decade, several researchers presented op-
timization procedures for the general thin-walled steel sections [12,13].
A considerable attention has been paid for the optimization of columns.
Olhoff and Seyranian formulated the column optimization problems
allowing for bimodal optimum buckling loads [14]. Maalawi presented
a method to obtain the column designs with maximum possible buck-
ling load [15]. Kruzelecki and Stawiarski investigated the optimal de-
sign of tubular columns [16]. Novakovic and Atanackovic studied the
optimal shape of an elastic column with clamped ends and with/
without elastic foundation [17]. Kruzelecki and Ortwein investigated
the optimization of columns under combined compression and torsion
[18]. Novakovi¢ determined the optimal shape of a column on Winkler
elastic foundation [19]. Zhang et al. presented semi-analytical solutions
based on the Hencky bar-chain model for optimal design of columns
[20]. Ruocco et al. proposed a method to optimize the Bernoulli col-
umns [21]. In addition, a significant number of works on the optimi-
zation of cold-formed columns have been conducted [22-28]. Also,
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studies on composite columns exist in the literature [29]. The number
of the recent studies on the optimization of beams is non-negligible.
Optimal shapes of a cantilever H-beam with a reduced section subjected
to cyclic displacements are found by Ohsaki et al. [30]. Banichuk et al.
investigated the optimal design of flexible cantilever beams that are
loaded from their free ends [31]. The shape optimization of a slender
cantilever beam for lateral buckling is investigated by Drazumeric and
Kosel [32]. There is another study concerning the optimization of
slender cantilever beams in which they partnered with Polajnar [33].
There are works on the optimization of beams made of high strength
steel [34] and resting on the Winkler foundation [35]. The shape op-
timization of tapered I-beams are studied by Ozbasaran and Yilmaz
[36]. Numerous researchers presented studies on the optimization of
beams with web openings [37-41]. Similar to columns, there is an
“optimization of cold-formed steel beams” section in the literature
[42-44]. As for the works conducted on beam-columns, Gil-Martin et al.
presented the proportioning of steel beam-columns based on the Re-
inforcement Sizing Diagrams (RSD) optimization methodology with
code-based constraints [45]. It is assumed that the section is compact
and singly-symmetric, the external loading produces in-plane bending
moment about the strong axis of the section, shear force acting in the
plane of the bending moment and axial force. Cheng et al. studied the
optimum design of clamped beam-columns under thermal loads that
maximize the buckling temperature and the fundamental natural fre-
quency of transverse vibrations [46]. Finally, Wang et al. investigated
the shape optimization of simply supported singly-symmetric cold-
formed beams and beam-columns [47].

Most of the engineering design problems are not sufficiently con-
strained to have a single solution; an infinite number of theoretical
solutions exist where the number of unknowns is greater than the
number of equations. The modern design procedures seek the best so-
lution(s) utilizing various optimization algorithms. This is one of the
most important differences between modern and conventional design
procedures. The structural optimization can be classified into three
categories as ‘size’, ‘shape’ and ‘topology’ optimization. The size opti-
mization process searches for the optimal design by taking the ‘size’ of
the structural components as design variables, while topology optimi-
zation deals with the connection information of the members. One of
the best definitions for the “shape optimization” concept is looking for
the best node positions of the finite element mesh of a structure without
changing the connectivity properties. For example if joint 1 is con-
nected to joint 2 and joint 3 is not connected to joint 5, they should stay
so during the optimization process.

This study presents the optimization of built-up I-section beam-
columns by seeking the best flange and web plate dimensions. Four
constraints are considered as stress, deflection, buckling and geometry.
Since mathematical models of the constraints are too complex to im-
plement a mathematical optimization algorithm, a recently introduced
modern metaheuristic (Crow Search Algorithm [48]) is used. Four op-
timization types, which are determined in terms of variable grouping
configurations, are introduced and optimal shapes for ten cases con-
sisting of five simply-supported and five cantilever members are found.
Then, the smallest predesigned hot-rolled sections that satisfy the
structural constraints are determined, and finally, the optimized shapes
and hot-rolled sections are compared in terms of structural material
economy.

2. Problem statement

The objective in structural optimization is to ensure the safety of
structures and find a design with the maximum gain. In the mathe-
matical model, safety measures are defined as design constraints. The
first constraint of the study (stress constraint) prevents the yielding of
the structural material. The von Mises yield criterion is considered to
determine the full elastic capacity of the bars. It is assumed that the
stress constraint is violated when the maximum absolute stress occurred
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Fig. 2.1. A buckled beam-column under uniaxial bending and uniform com-
pression. (a) Side view, (b) m—m section.

on the members exceeds the allowed value. The flanges carry most of
the bending moment, whereas the web resists the bulk of the shear force
in I-sections. Transversal loads produce normal and shear stresses dis-
tributed over the cross-section. However, influence of the shear stress is
relatively small on the critical von Mises stress of the I-section members
with large spans. An important note at this point is that this study as-
sumes that the parts of the built-up members are rigidly connected.
With these simplifications, it becomes easy to determine the maximum
von Mises stress produced on the member.

The second constraint limits the maximum absolute deflection. The
deflection curve of a member that is subjected to axial load(s) in ad-
dition to transverse bending cannot be determined by simple super-
position because the axial load causes a feedback-type interaction be-
tween the bending moment and the deflection (Fig. 2.1).

In Fig. 2.1, s is the shear center and c is the center of gravity. The

author finds it practical to utilize energy methods to obtain the ap-
proximate deflection curve of a member due to simple mathematical
modelling. The total potential for the in-plane deflection of the beam-
column given in Fig. 2.1 can be written as follows considering the
second order effects:
I, = %‘/O'L ELvZ.dz + Qug + My, + fquz—g ‘/;L vidz @.1)
where E is the Young’s modulus, I, is the moment of inertia about x
axis, v is the displacement in the —y direction, vy and v are the vertical
displacements of the concentrated load (Q) and the concentrated mo-
ment (M), respectively. The deflection curve of the beam-column can
be obtained by choosing an appropriate trial function for v and sub-
stituting it into the total potential equation.

The third constraint is to keep the member stable. Bars may ex-
perience a variety of global buckling modes depending on the structural
material, section properties and loading case. Flexural, torsional and
flexural-torsional buckling are the global buckling modes of the com-
pression members. On the other hand, lateral-torsional buckling applies
to beams and beam-columns. In this study, the extensive energy equa-
tion provided by Pi and Trahair [49,50], which considers prebuckling
deflections (Eq. (2.2)), is used to determine the non-linear global
buckling eigenvalues.
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(2.2)

In Eq. (2.2), I, is the moment of inertia about weak axis, u is the
lateral displacement, ¢ is the torsional rotation, G is the shear modulus,
I, is the torsional constant and I, is the warping coefficient. 4 is the



Download English Version:

https://daneshyari.com/en/article/6736249

Download Persian Version:

https://daneshyari.com/article/6736249

Daneshyari.com


https://daneshyari.com/en/article/6736249
https://daneshyari.com/article/6736249
https://daneshyari.com

