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A B S T R A C T

The seismic response of gravity dams is typically derived under a deterministic finite element model for the dam-
reservoir-foundation system. In the case where uncertainty in material properties should be incorporated into
overall dam performance, the sensitive parameters can be treated as random variables. This paper presents the
results of a study that considers the spatial distribution of random variables in the context of random field
theory.

Koyna Gravity Dam is used as a setting for numerical simulations. The concrete modulus of elasticity, mass
density and tensile strength are all assumed to be random fields and generated based on the covariance matrix
decomposition and midpoint discretization techniques.

The anatomy of the random field seismic responses are presented first, followed by a set of parametric
analyses. The impact of correlation length, a single- vs. double-random field, one- or two-dimensional material
distributions, ground motion intensity and record-to-record variability and, lastly, dam class are all investigated
herein. The uncertainty and dispersion of the seismic responses are quantified in each model; it is found that
concrete heterogeneity affects the seismic performance evaluation and should be considered in a structural
assessment and risk analysis.

1. Introduction

1.1. Conceptual review

In general, the methods applied in structural analysis and design can
be classified as either deterministic or probabilistic simulations. In the
case where the finite element method (FEM), used to discretize the
medium, is combined with statistics and reliability methods, the so-
called probabilistic finite element method (PFEM) can be developed
and applied to both linear and nonlinear systems. Based on the defi-
nition in Der Kiureghian and Ke [1], the term probabilistic or stochastic
finite element method (SFEM) is employed in reference to a method
that accounts for the geometric or material uncertainties in the struc-
ture, as well as the applied loads.

The Monte Carlo Simulation (MCS) family is the basic method used
to perform a PFEM/SFEM analysis; it includes a repetition of the si-
mulation observed from a stochastic process in order to determine the
probability of occurrence of a certain limit state (LS). Since it is based
on the theory of large numbers, → ∞N Nsim , an unbiased estimator of PLS
is given by:

 =P N
NLS

MCS exc

sim (1)

where Nsim and Nexc are the total number of simulations and the number
of exceeded samples, respectively; the “hat” indicates an estimation.

MCS-based SFEM includes the following steps:

• A number of random variables or random fields are generated as
input for the SFEM. Note that the term “random variable” is used
here for probabilistic simulations in which the property has a con-
stant value over the entire model, while in the case of a “random
field”, the parameter has (temporal or spatial) variability within the
model.

• Run the finite element model for every random variable or random
field.

• Extract the engineering demand parameter (EDP) as is customary in
earthquake engineering (EE) or quantity of interest (QoI), which is
the terminology used in uncertainty quantification (UQ). Next,
perform a statistical analysis on the EDP/QoI to determine the ap-
propriate distribution model.

The crude MCS, Eq. (1), requires many simulations, which
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introduces inefficiency in many large-scale, real-world finite element
simulations. A wide array of methods have been proposed to reduce the
number of samples, which in turn reduces the variance of the responses.
Among these methods are: Importance Sampling (IS) [2], Latin Hy-
percube Sampling (LHS) [3], Subset Simulation (SS) [4], and design of
experiments (DOE) [5].

Other techniques applied to computationally intensive systems are:

• Perturbation method, in which the random functions (e.g. stochastic
finite element matrix, the loading vector) are expressed as the sum
of deterministic and random components [6]. A Taylor series ex-
pansion can be used for this purpose, where higher-order terms
improve the accuracy of the approximation. Various techniques
within this category are aimed at calculating the first two moments
of responses, i.e. the mean, variance and correlation coefficients [7].

• Spectral Stochastic Finite Element Method (SSFEM), in which the
random field is expressed based on polynomial chaos expansion
(PCE) and Karhunen Loève expansion (KLE) [8].

• Finite Element Reliability Method (FERM), in which the failure
probability of the system is evaluated subject to a limit state (LS)
function [9].

1.2. Literature review

Random field theory and its applications are extensively used in the
field of geotechnical engineering [10]. Emphasis is placed on the slope
reliability analysis based on random FEM [11,12]. Nour et al. [13]
studied the probabilistic seismic response of a heterogeneous soil pro-
file with three parameters (i.e. shear modulus, damping, and Poisson’s
ratio) as the spatially random fields. These authors found that hetero-
geneity greatly affects the behavior of the soil profile, which induces
differential movement at the ground surface.

In the field of structural engineering, various researchers have in-
vestigated the impact of a heterogeneous quasi-brittle material (more
specifically concrete) on the cracking response. Yang and Xu [14], Yang
et al. [15] and Su et al. [16] investigated complex cohesive fracture in
random heterogeneous quasi-brittle materials using the Monte Carlo
simulation technique. Yin et al. [17] and Yin et al. [18] studied the
fracture behavior of a random heterogeneous asphalt mixture with a
cohesive crack.

In the case of concrete dam engineering, studies are very limited.
The only research papers accessible are Tang et al. [19], Zhong et al.
[20] and Yin et al. [21]. In all of these, concrete heterogeneity has been
modeled based on the Weibull distribution law, while damage plasticity
is used to simulate the failure process. These authors reported that
when concrete heterogeneity is considered, the stress distribution is no
longer smooth, which therefore better reflects the real-world situation.
Moreover, the concrete cracking pattern is qualitatively compared.
They also showed that different samples with the same heterogeneity
index lead to a similar crack pattern; however, no statistical inter-
pretation is drawn. Increasing the heterogeneity index (i.e. more
homogeneous concrete), increases the potential for localized damage,
and increases the risk of damage under seismic excitation.

1.3. Objectives and contributions

The objective of this paper is to study the seismic response of con-
crete gravity dams according to random field theory. A basic formula-
tion for random fields will be reviewed first (Section 2). Second, the
numerical model for the dam case study will be explained (Section 3).
Next, a brief overview will be provided on the seismic performance
index used in this paper (Section 4). Lastly, the anatomy of these
random field responses plus a set of parametric and sensitivity analyses
will be presented in Section 5.

Some of the authors’ major contributions can be summarized as
follows:

• Formulation of random field theory for the time history elastic
properties of gravity dams.

• Evaluation of the correlation length effect on response dispersion.

• Evaluation of both single- and double-random field distributions on
the dam response.

• Quantification of the degree of spatial distribution on response
dispersion.

• Study of the impact of ground motion intensity on response dis-
persion.

• Quantification of ground motion record-to-record variability and
local/spatial material randomness on response dispersion.

• Investigation of the impact of dam class (e.g. shape and size) on
response pattern.

2. Random fields

2.1. Random field classifications

According to Vanmarcke [22], differences between the types of
random fields originate from the nature of the uncertainty within the
studied stochastic environment. Uncertainty about the properties of a
random medium is categorized in the passive type of field. However, a
space-time process, H x t( , ), is characterized by both active and in-
trinsic uncertainties. On the other hand, depending on the locations of
observation points, a random field can be classified into one of five
groups, namely:

• Random series: observations are recorded at discrete points along a
time axis, Fig. 1(a).

• Lattice process: observations are recorded at the sites of a spatial
lattice, Fig. 1(b).

• Continuous random function: observations are recorded at all points
along a spatial and/or temporal coordinate axis, Fig. 1(c).

• Random partition of space: the random discrete variable is observed
at every point in space, Fig. 1(d).

• Random point process: points are located according to a random
pattern in space, Fig. 1(e).

2.2. Random field generators

In an interesting classification, Van der Have [23] provided a
comprehensive review of some of the most widely used techniques for
generating random fields. Two classes basically exist, Fig. 2:

• Class I: This class consists of a spatially-correlated random variable
and a discretization method. For every point in the finite element
domain, a random variable correlated with other points in the
random field domain is generated. The evaluated points could be:
element integration points, nodes, or representative points (e.g. an
element center).
The discretization techniques can also be divided into three main
categories, Fig. 2:
– Point discretization methods, resulting in a piecewise constant
random field; these include the MPM and IPM.

– Point discretization methods, resulting in a continuous random
field; these include the SFM and OLE.

– Average discretization methods, including the SAM and WIM.

• Class II: This class is based on series expansion methods, wherein the
random field is represented by a sum of functions that are multiplied
by a random variable. This class generates a continuous random
field. To be applied in a finite element mesh, these continuous
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